
SRAP-Agent: Simulating and Optimizing Scarce Resource Allocation
Policy with LLM-based Agent

Jiarui Ji1,Yang Li1, Hongtao Liu1, Zhicheng Du1,
Zhewei Wei1,2, Weiran Shen1,2, Qi Qi1,2, Yankai Lin1,2*

1Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
2Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China

Abstract
Public scarce resource allocation plays a crucial
role in economics as it directly influences the ef-
ficiency and equity in society. Traditional stud-
ies including theoretical model-based, empiri-
cal study-based and simulation-based methods
encounter limitations due to the idealized as-
sumption of complete information and individ-
ual rationality, as well as constraints posed by
limited available data. In this work, we propose
an innovative framework, SRAP-Agent (Sim-
ulating and Optimizing Scarce Resource Allo-
cation Policy with LLM-based Agent), which
integrates Large Language Models (LLMs) into
economic simulations, aiming to bridge the gap
between theoretical models and real-world dy-
namics. Using public housing allocation scenar-
ios as a case study, we conduct extensive policy
simulation experiments to verify the feasibility
and effectiveness of the SRAP-Agent and em-
ploy the Policy Optimization Algorithm with
certain optimization objectives. The source
code can be found in https://github.com/
jijiarui-cather/SRAPAgent_Framework.

1 Introduction

Economics (Mankiw, 2011) delves into how to
limit scarce resources to meet unlimited needs. A
critical aspect of this field is the allocation of public
scarce goods (Jr et al., 1977; Groves and Ledyard,
1974; BROCK, 1980), focusing on utilizing lim-
ited resources to improve economic efficiency and
social welfare (Blümel et al., 1986). In the field
of research on the allocation of public scarce re-
sources, existing work can be primarily categorized
into three main approaches: (1) theoretical model-
based methods (Hylland and Zeckhauser, 1979; Su
and Zenios, 2004, 2005; Chen et al., 2018), which
utilizes economic theories to develop models that
can predict how resources should be allocated effi-
ciently; (2) empirical study-based methods (Baner-
jee and Somanathan, 2007; Nold, 1992; Falkinger
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et al., 2000) which analyze real-world data to un-
cover patterns, correlations, and the effects of var-
ious policies; (3) computational simulation-based
methods (Holland and Miller, 1991; Zheng et al.,
2022), which emulate economic environments to
test economic hypotheses within simulated set-
tings. However, empirical study-based methods
often face challenges of data scarcity, establishing
causality, and isolating variables in complex so-
cial systems. Meanwhile, theoretical model-based
methods and computational simulation-based meth-
ods often rely on simplified assumptions, overlook-
ing the complex interplay of rational and social
behaviors in human decision-making.

Fortunately, the emergence of LLMs such as
ChatGPT and GPT-4 (Anil et al., 2023; Touvron
et al., 2023; Brown et al., 2020; OpenAI, 2023), has
introduced a new potential in economic simulations.
Acclaimed for their ability to mimic human-like
behaviors (Li et al., 2023a; Park et al., 2022, 2023),
LLMs demonstrate the potential to encapsulate the
logic and patterns inherent in human cognition by
pre-training on extensive web data (OpenAI, 2023).
This breakthrough facilitates the incorporation of
social consensus mechanisms into economic sim-
ulations, offering a comprehensive framework for
evaluating the impact of resource allocation poli-
cies on both economic efficiency and social wel-
fare.

In this work, we develop an LLM-based scarce
resource allocation policy simulation agent, SRAP-
Agent. It abstracts the resource allocation queues
for policy execution, with LLM-based agents
carefully designed for the simulation of partici-
pants’ behaviors. Furthermore, we propose the
genetic algorithm-based policy optimization algo-
rithm (POA) to find optimal policies towards pre-
defined targets. Through experiments in the context
of public housing allocation, we validate the effec-
tiveness of SRAP-Agent, which reveals several key
insights: (1) The LLM-based agent can effectively
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Figure 1: An illustration of the SRAP-Agent framework. The horn symbolizes the broadcasting process of policy
information to participants.

simulate the emotion factor and strategic behav-
iors of humans. Compared to the GPT-4-driven
agent, the simulated decision-making behavior of
the GPT-3.5-driven agent is more similar to hu-
mans’ behavior. (2) In scarce resource allocation,
pivotal factors include the entry conditions of par-
ticipants, the queuing method, and the categoriza-
tion of resources. (3) POA can optimize policies
towards a specific policy evaluation metric, and
improve approximately 20% on this metric.

2 Related Work

Public Scarce Resources Allocation. The alloca-
tion of public scarce resources represents a crucial
area of inquiry in the development of economic
policy. A multitude of researchers (Hylland and
Zeckhauser, 1979; Shapley and Scarf, 1974; Sön-
mez, 1999; Abdulkadiroğlu and Sönmez, 1999)
conduct in-depth investigations into static matching
models and propose Pareto efficient, individually
rational, and strategy-proof simple mechanisms for
various scenarios. Later, given the predominantly
dynamic nature of practical scarce resource alloca-
tion, several studies (Sönmez and Ünver, 2011; Su
and Zenios, 2004, 2005; Bloch and Cantala, 2017)
begin to integrate dynamic properties into their
models. The waitlist mechanism is widely adopted
for allocating scarce resources. For instance, Chen
et al. (2018) explore the waitlist mechanism in pub-
lic housing allocation, Agarwal et al. (2021) design
a waitlist for kidney organ allocation, which in-
creased donor supply by 18.2% to enhance patient
welfare; Lewis et al. (2000) develop a mechanism
for managing waitlist for elective surgeries, improv-
ing the fairness of surgery opportunity distribution

among patients. We focus our research on the k-
deferrals waitlist mechanism in (Chen et al., 2018).

Economic Policy Simulation. The predominant
methodologies for simulating the implementation
of economic policies include rule-driven and rein-
forcement learning-based simulations. Rule-driven
approaches (Holland and Miller, 1991; Bonabeau,
2002; Farmer and Foley, 2009), involve model-
ing utility functions as agents, formulating various
environmental rules, and observing the resultant
global changes. Reinforcement learning-based sim-
ulations (Laurent et al., 2011; Claus and Boutilier,
1998; Zheng et al., 2022; Bansal et al., 2018; Jader-
berg et al., 2019), involve modeling agents as either
Markov Decision Processes (MDP) or Partially Ob-
servable Markov Decision Processes (POMDP),
employing reinforcement learning methods to max-
imize the utility of each agent. However, both
methods are heavily dependent on the assumption
of individual rationality, often leading to predic-
tions that diverge from real-world outcomes. While
exploring the same problem, these methods presup-
pose that agents act rationally and calculate behav-
ior by first optimizing equilibrium outcomes.

Our research introduces a novel approach by in-
tegrating social consensus derived from LLMs with
the conventional concept of individual rationality
to generate choices that reflect individual prefer-
ences. We optimize policy based on simulation
results, providing a unique research perspective
incomparable to existing methods.

LLM-based Agents. With the development
of LLMs (OpenAI, 2023; Anil et al., 2023; Tou-
vron et al., 2023), there has been an emerging focus
on the exploration of LLMs-based agent architec-



tures and prompt designs (Kojima et al., 2022;
Shinn et al., 2023; Wang et al., 2023c), aimed at
augmenting the capabilities of LLM-based agents
to perform more complex tasks. Alongside these
developments, researchers are devoted to crafting
realistic societal simulation environments (Li et al.,
2023a; Park et al., 2022, 2023) that incorporate mul-
tiple agents, thereby providing a more dynamic and
interconnected framework for agent interaction and
behavior analysis. Following this, (Li et al., 2023b)
makes a primary exploration of the effectiveness of
LLMs-based agent simulation in macroeconomic
policy. However, it remains unconfirmed whether
the decision-making capabilities of LLMs align
with those of actual humans in economic activities.
Our investigation draws inspiration from the ex-
perimental findings of Dillion(Dillion et al., 2023),
aiming to integrate social consensus with individual
rationality within the economic policy simulation
process.

3 SRAP-Agent

In this section, we present SRAP-Agent, a novel
large language model (LLM) agent-based simula-
tion framework designed for examining the impact
of economic policies on public scarce resource allo-
cation. SRAP-Agent aims to consider that human
decision-making in economic contexts is not purely
rational, but is influenced by a mix of rationality
and emotion, leading to unpredictable outcomes.

The simulation of SRAP-Agent is divided into
three phases as shown in Fig. 1: (1) Setup phase, in-
volves the initialization of critical variables includ-
ing the profiles of participants P , the information
of available public scarce resources R, and the allo-
cation policy π. (2) Simulation phase, dynamically
simulates the allocation of resources R among par-
ticipants P , adhering to the constraints and rules
defined by the allocation policy π. (3) Evaluation
phase, focuses on assessing the outcomes of the
allocation process, employing various metrics such
as fairness and participant satisfaction.

Next, we outline the formulation of the alloca-
tion policy π and the structure of participants P .

3.1 Allocation Policy

Public scarce resource allocation represents a sig-
nificant challenge in economics, particularly in the
context of public resources where the objectives of
efficiency and equity frequently converge. In this
work, we consider the queuing, pricing, and group-

ing mechanisms in SRAP-Agent. Formally, In
the SRAP-Agent framework, we formalize a struc-
ture consisting of m distinct queues: q1, q2, . . . qm.
Each queue is uniquely characterized by:

(1) Participant entry conditions: to define the
conditions under which individuals are eligible to
enter a specific queue. Generally, the entry con-
dition Equeue(i) for the queue qi typically encom-
passes various socioeconomic factors such as indi-
vidual budget, average income, and other relevant
personal information. In the context of budget-
based criteria, the entry conditions for m queues
are categorized into m distinct budget ranges, or-
ganizing from high to low budget. This allows the
simulation to reflect diverse economic backgrounds
and their access to resources.

(2) Queue sorting strategies: to govern the pri-
oritization of participants within each queue upon
their entry, denoting as Squeue. We have incorpo-
rated two distinct sorting strategies: (a) first-in-
first-out, of which participant order is set by arrival
sequence. This method, prevalent in real scenarios,
guarantees procedural fairness by chronologically
allocating opportunities without regard to partici-
pants’ characteristics. (b) priority for vulnerable
groups, which is designed to address social eq-
uity by providing preferential access to vulnerable
groups, positioning them at the forefront when en-
tering the specific queue. Besides, SRAP-Agent
also employs the widely-used waiting queue (Chen
et al., 2018; Agarwal et al., 2021) mechanism. Each
queue encompasses two components: the waiting
queue and the selection queue. Participants initially
enter the waiting queue. When a spot becomes
available in the selection queue, the participant
at the front of the waiting queue is transferred to
the selection queue. The number of resources is
denoted as |R|, then the capacity of the selection
queue for accommodating participants is upper-
bounded by c · |R|. In the selection queue, each
participant can queue to choose up to k times; once
their choices are exhausted, they return to the wait-
ing queue. This mechanism diminishes the waiting
time for participants by increasing the chances of
participants staying in the selection queue.

(3) Available resource sub-sets: These sub-sets
represent the specific resources that participants in
a given queue can access and choose from, denot-
ing as Rqueue(i) ⊆ R for the qi. The composition
of these resource sub-sets is dictated by certain pre-
defined conditions, primarily considering factors
such as the price and quality of resources. Typ-



ically, the predefined conditions of the resources
in a queue are matched with their corresponding
entry conditions. This ensures that resources are
categorized and allocated to participant groups in
a manner that is congruent with their economic ca-
pacity. Hence, the allocation policy is defined as
the following equation:

V (pj) = π(pj |Equeue, Squeue, Rqueue,m), (1)

where pj represents the j-th participant in the list
of participants P = (p1, p2, · · · , pn), the function
V (pj) is the available resource for the j-th par-
ticipant under the policy. It enters the qi when it
satisfies the condition Equeue(i). Its order in the
queue is determined by Squeue. When it is his
turn to select, the participant pj can choose from
the remaining resources in Rqueue(i), i.e., V (pj).
In SRAP-Agent, the policymakers can set the re-
source policy according to their requirement, and
the policy will be broadcast to all participants.

3.2 LLM Agent-based Participant Simulation
Recognizing the complexity of human decision-
making, SRAP-Agent employs LLM-based agents
to simulate participants’ behaviors in the context of
public scarce resource selection. This approach rec-
ognizes that human decision-making is not purely
rational and often influenced by a range of factors.
While it is impractical to simulate all aspects of hu-
man behavior, SRAP-Agent focuses on two most
impactful behaviors: (1) Decision-making behavior.
This aspect of the simulation addresses how partic-
ipants evaluate and choose resources, factoring in
elements like personal preferences, perceived value,
and immediate needs. (2) Social behavior. Social
dynamics also play a critical role in resource selec-
tion. This includes interactions with other partici-
pants, social norms, and external influences, which
can affect how participants perceive and choose
resources.

Agent Architecture SRAP-Agent leverages
LLM-based agents to instantiate individual par-
ticipants in the simulation. Each participant pj
is uniquely characterized by an initial profile in-
cluding several key personal attributes such as eco-
nomic status, income level, family background,
and social network connections. To facilitate dy-
namic interaction and decision-making, each agent
is equipped with a memory component mj describ-
ing the participant’s activity history. This memory
serves as a critical reference point, enabling the

agent to make informed decisions based on past
actions and interactions within the simulation en-
vironment. This design not only enhances the re-
alism of the simulation but also allows for a more
nuanced exploration of social dynamics and indi-
vidual decision-making processes.

Social Behavior Simulation Human decision-
making often involves the collection of information
to make more informed choices. SRAP-Agent in-
corporates two primary social behaviors frequently
employed by humans for information collection:

(1) Broadcasting: This mechanism is akin to
a conventional web blog. Participants in SRAP-
Agent utilize this platform for both disseminating
and acquiring information, mirroring the way in-
dividuals interact and gather information in real-
world social networks.

(2) Private messaging: In addition to broad-
casting, participants can send private messages to
their friends. This feature is critical for more direct
and personalized communication, such as seeking
assistance or sharing specific information about
high-quality resources. In human society, com-
munication is deeply influenced by psychological
factors that shape the information being shared, re-
sulting in asymmetrical information within social
networks. To simulate the mental state of humans
and the strategic interactions among different par-
ticipants, we adopt a mechanism of memory assess-
ment. We design the memory mj of pj to com-
prise two parts: (1) Trustworthy memory mT

j that
mainly includes information from reliable sources,
such as policymakers; (2) Suspicious memory mS

j

that stores information from the social behaviors.
In the process of communication among partici-

pants, assume that pj is interacting with pk, and the
received information from pk will be stored in sus-
picious memory mS

j firstly. Then, pj measure the
reliability of information from participant pk from
two aspects: i) assessing the nature of their relation-
ship with pk, encompassing factors like closeness
and historical interactions, in conjunction with a
moral appraisal of pk; ii) contrasting the received
information against their trusted memory mT

j . Fol-
lowing this evaluation, parts of the received infor-
mation that are deemed reliable are integrated into
the trustworthy memory mT

j .
Through these mechanisms, SRAP-Agent effec-

tively models the complex social dynamics of infor-
mation gathering and sharing, allowing for a deeper
understanding of human behavior in the context of



Algorithm 1 POA: Policy Optimization Algorithm

Require: Historical policies Πh, predictor f̃ , run-
ning iterations M

Ensure: Optimized policy π∗

1: Randomly generate policies Πr.
2: Initialize policy pool Π with Πh and Πr.
3: for i = 1 to M do
4: Calculate the fitness f̃(π) of π in Π.
5: Use the tournament selection (Miller et al.,

1995) to select policies Πs in Π based on fit-
ness.

6: Combine pairs in Πs to produce Πc.
7: Apply mutation to the Πc to obtain Πm.
8: Replace Πs with Πm to update Π.
9: end for

10: Obtain the optimized policy by f̃ :

vπ∗ = argmax
vπ

f̃ (vπ) , π ∈ Π

11: Decode vπ∗ to obtain the optimized policy π∗.

public scarce resource allocation.

Decision-Making Behavior Simulation The
simulation of the decision-making processes in
SRAP-Agent can be formulated by:

R∗
j = D(pj , V (pj)), (2)

where the function D(pj , V (pj)) indicates the pro-
cess that pj selects the desired resource from his
visible resource pool. R∗

j = ∅ means participant pj
quit the decision procedure when there’s no desired
resource.

4 POA: Policy Optimization Algorithm

We propose a policy optimization algorithm (POA)
based on the genetic algorithm (Lambora et al.,
2019) to find more reasonable policies. The set
of policies proposed by the policymaker is π ∈
Π, and f is the policy evaluation metric, then the
optimal policy is π∗ = argmax

π∈Π
f(π). Generally,

f takes into account L different kinds of policy
evaluation metrics (fj(π), j ∈ [L]), which can be
categorized into societal satisfaction and societal
fairness metrics. We pre-set the weights wj to
alter the optimization objective of POA, the specific
calculation formula of f is as follows:

f(π) =
n∑

j=1

wj · fj(π), π ∈ Πh. (3)

Due to the excessive number of policies that need
to be searched, the time required to obtain policy
evaluation results with SRAP-Agent may be exces-
sively long. So we use the vπ, f(π) dataset to train
a predictor f̃ for the estimation of the policy evalu-
ation result: f(π) = f̃(vπ). POA then performs M
iterations to find more rational policy parameters.
The specific steps of POA are listed in Algorithm.1.

5 Experiment

We select the public housing allocation scenario
as a typical case to validate the simulation effec-
tiveness of SRAP-Agent. We conduct experiments
in three steps: 1. We conduct the Turing test to
ensure that, SRAP-Agent can effectively simulate
the policy execution process of various policies
proposed by the policymaker. 2. Based on the sim-
ulation results obtained from the SRAP-Agent, we
analyze the impact of various policy parameters on
the allocation of public scarce resources. 3. Subse-
quently, we employ the POA algorithm to find the
optimal policy in pursuit of specific optimization
objectives.

5.1 Evaluation Metrics
In our research, we adhere to the commonly used
metrics for public scarce resources allocation (Ver-
munt and Törnblom, 1996; Wang et al., 2023b),
employing two major categories of policy evalua-
tion metrics:

Societal Satisfaction Metrics. We use three
metrics to evaluate societal satisfaction: (1) Avg
rsize: representing the average per-capita living
area size of house resources for all participants; (2)
Avg WT : Average waiting time for each partici-
pant; (3) SW : the social welfare, quantifying the
cumulative satisfaction of all participants.

Societal Fairness Metrics. In addition, we em-
ploy four metrics to evaluate societal fairness: (1)
Var rsize: denoting the variance in per capita living
area size among participants; (2) Rop: indicating
the number of inverse order pairs in house alloca-
tion results; (3) co-Gini: the Gini coefficient (Wang
et al., 2023b) calculated on house allocation result.
We use F (V,NV ) to reflect the SW gap between
the vulnerable (V ) and non-vulnerable group (NV )
of participants. The calculation equations are listed
in Appendix C.2.

5.2 Turing Test
To assess the simulation capabilities of LLMs, the
Turing test (Turing, 2009) is a commonly employed



Table 1: Turing test for responses from GPT-3.5 and
GPT-4. *means statistically significant with p < 0.05.

GPT-3.5 GPT-4

Human > Robot 26.6% 20.6%∗

Human = Robot 36.3% 21.1%∗

Human < Robot 30.2% 49.1%∗

None 7.0% 9.3%∗

and effective metric (Ng et al., 2024; Jones and
Bergen, 2023; Jannai et al., 2023). Given that
SRAP-Agent is built on human behavior simulation
through LLM-based agents, we design a Turing test
(Turing, 1950) to validate the system’s capability to
realistically simulate the policy execution process.
We utilize GPT-3.5 and GPT-4 (OpenAI, 2023) to
build agents. Subsequently, we recruit a different
group of human annotators to make paired compar-
isons of rationality for LLM responses and human
responses. They choose one of these rationality
labels: (1) human response is more rational than
LLM (Human > Robot) (2) human response is
less rational than LLM (Human < Robot) (3)
both responses are rational (Human = Robot) (4)
neither is rational (None).

Result Analysis Table 1 shows the compari-
son of the rationality of responses for GPT-3.5,
GPT4, and humans. We can see that: (1) The
comparison between human responses and those
from GPT-3.5 indicates a majority view that hu-
mans and agents perform similarly in rationality,
with nearly equal proportions of judging human
superiority (Human > Robot) and inferiority
(Human < Robot) to robotic responses. This
suggests a parity in rational decision-making capa-
bilities between humans and GPT-3.5, albeit with a
marginal preference for the latter. (2) In contrast, re-
sponses involving GPT-4 significantly outperform
human counterparts in terms of rationality, as evi-
denced by a higher incidence of Human < Robot
compared to Human > Robot. This discrepancy
underscores GPT-4’s ability to generate more strate-
gic decisions, such as changing plans and waiting
for future opportunities (see the case study in Ap-
pendix D). Specifically, GPT-4 demonstrates profi-
ciency in proposing adaptive solutions and exploit-
ing policy nuances to gain strategic advantages, a
sophistication not commonly found in human or
GPT-3.5 responses, which tend to focus on imme-
diate factors like budget constraints and personal

preferences. The findings suggest that GPT-3.5
aligns closely with the decision-making processes
of the average individual in public scarce resource
allocation. Consequently, we adopt the GPT-3.5-
turbo-0301 model as our backbone LLM.

5.3 Simulation-based Policy Analysis
In the ablation experiments for the policy, we con-
duct comparison experiments on each policy pa-
rameter in Equation 1. We conduct experiments
on two policy factors: (1) resource and participant
grouping: combinations of different Equeue and
Rqueue; (2) different queue sorting strategies. We
also simulate the phenomenon of allocation con-
flict in the real-world, with detailed information in
the Appendix. F.4.

Resource and Participant Grouping We com-
pare the policies formed by combinations of dif-
ferent Equeue and Rqueue. In Equeue, participants
primarily enter queues in three ways: based on
budget (pbudget), based on number of family mem-
bers (pfamily), and based on self-selected queue
(pselect). Corresponding to the entry conditions for
participants, there are three methods of categoriz-
ing resource sub-sets: based on rental costs (rrent),
based on house size (rsize), and based on random
categorization (rrandom). Table 2 shows the perfor-
mance of different policy combinations of Equeue

and Rqueue across various policy evaluation met-
rics. We can observe that:

Queue Sorting Strategies Regarding queue sort-
ing policy Squeue. Firstly, we compare two sorting
methods: whether to give priority to vulnerable
groups or not (FIFO). We adopt two methods of
designating vulnerable groups based on rent bud-
get: sort all participants at first (VFA) and sort the
participants in each round (VFR), with the bottom
20% designated as vulnerable groups. As shown in
Fig. 2a, prioritizing vulnerable groups can reduce
the satisfaction gap between vulnerable and non-
vulnerable groups (∆F (W,G) > 0), as compared
to the FIFO method. No marked superiority is ev-
ident between the VFA and VFR methods, which
are influenced by the stochastic nature of partici-
pant arrival patterns.

Secondly, we compare the impact of the k and c
parameters in the waitlist mechanism. This mecha-
nism is primarily designed to diminish the waiting
time for participants by increasing the chances of
participants staying in the selection queue. As il-
lustrated in Fig. 2b, increases in k and the c for the



Table 2: Comparison experiments on different combinations of entry condition and resource sub-sets.

Equeue Rqueue
Satisfaction Fairness

Avg rsize ↑ Avg WT ↓ SW ↑ Var rsize ↓ Rop ↓ co-Gini ↓

rrandom 2.5±0.8 6.1±0.3 83.8±32.0 55.7±18.6 73.5±24.5 0.9±0.0

pselect rrent 7.1±0.1 4.8±0.0 244.6±3.4 141.4±3.2 185.0±7.0 0.7±0.0

rsize 13.8±0.4 3.1±0.5 419.9±0.3 229.1±22.8 327.0±26.0 0.5±0.0

rrandom 10.8±0.1 4.6±0.0 313.1±5.7 226.7±8.1 366.5±19.5 0.6±0.0

pfamily rrent 11.5±0.0 3.6±0.0 410.0±3.3 159.3±0.5 251.5±1.5 0.5±0.0

rsize 11.7±0.3 3.8±0.1 410.4±2.8 159.9±9.4 254.5±23.5 0.5±0.0

rrandom 10.0±0.0 4.4±0.1 313.2±11.2 185.3±15.6 300.0±10.0 0.6±0.0

prent rrent 11.3±0.2 3.9±0.0 402.7±1.4 163.7±7.4 246.5±4.5 0.5±0.0

rsize 12.0±0.2 3.9±0.1 389.8±0.8 195.1±9.0 276.0±31.0 0.5±0.0

Table 3: Comparison of optimized policies π∗ against πKM on policy evaluation metrics.

π m Equeue Squeue Rqueue Satisfaction Fairness
Sort k c Avg rsize ↑ Avg WT ↓ SW ↑ Var rsize ↓ Rop ↓ co-Gini

π∗
s 3 pselect FIFO 4 4 rsize 16.3±0.5 1.9±0.0 427.6±12.7 202.3±12.9 221.5±19.5 0.4±0.0

π∗
f 3 pselect VFA 3 3 rsize 16.2±0.4 1.9±0.0 425.1±11.9 202.6±6.6 193.5±32.5 0.4±0.0

πKM - - - - - - 16.0 - 485.9 275.7 511 0.46
πS 1 prandom FIFO - 3 rrandom 14.70±0.63 1.89±0.63 420.1±1.9 202.5±17.1 223±0.5 0.4±0.0

πB 3 pselect FIFO - 2 rsize 15.36±0.05 1.56±0.1 409.1±2.4 270.8±3.0 414.5±0.5 0.5±0.0

πH 1 prandom VFR 2 3 rrandom 11.61±0.38 3.54±0.03 392.1±19.6 182.5±3.18 275±0.00 0.5±0.0

(a) sorting methods (b) waiting queue

Figure 2: Comparison of queue sorting methods.

k-waitlist effectively reduce Avg WT , corroborat-
ing our initial expectation.

5.4 Finding the Optimal Allocation Policy
To evaluate the effectiveness of POA for policy
parameter optimization, we select the following
baseline policies: (1) On the single SW metric,
a solvable optimal policy exists in the expected
sense. We use the Bipartite Graph Matching al-
gorithm, specifically the Kuhn-Munkres algorithm
(Zhu et al., 2016) to find this policy πKM . (2) Addi-
tionally, we select three policies of scarce resource
allocation from real human societies (πS ,πB ,πH ;
detailed information is listed in Appendix. G.2).

Result Analysis POA separately optimizes poli-
cies against two pre-set optimization objectives:
the optimized policy π∗

s prefers societal satisfac-

tion, and the optimized policy π∗
f prefers societal

fairness. The metric weights pre-set for optimiz-
ing these two objectives are delineated in Table 15.
Fig. 4 demonstrates the progression of the policy
optimized by POA in terms of the policy evaluation
metric f(π), as the number of iterations increases.
The POA algorithm can generate robust policies
after several iterations, and f(π) improves by 20%
after 50 iterations.

Results of evaluation metrics for optimized poli-
cies are listed in Table 3. (1) For real-world poli-
cies: πH prioritizes societal fairness while πB pri-
oritizes societal satisfaction. πS performs the best
in achieving a balance in societal fairness and sat-
isfaction metrics. (2) Compared with the existing
real-world policies, π∗

s enhances the SW metric by
1.8%, π∗

f enhances the societal fairness metric by
13.2%. (3) Although πKM surpasses π∗ in the SW
metric. However, πKM exhibits an imbalanced em-
phasis on dominant groups of participants. This
is reflected by poor performance in societal fair-
ness metrics, with Rop reaching 511. POA consid-
ers a diverse combination of metrics during policy
optimization, thus enabling the equilibrium of all
evaluation metrics while optimizing the target.



Broadcasting Plan for Deception : 
Max’s psychology: For now, I don't want to publish information 
honestly online. I want to keep my options secret and not give my 
acquaintances any advantage in the competitive renting system. 
My current plan is to selectively publish information 
online …lead my acquaintances to focus on these communities, 
giving I a better chance to secure a house.

Broadcasting Content for Deception: 
Max: I have heard that community 2 is a great community to live 
in…Some of my acquaintances have already chosen houses in this 
community and they are very satisfied with their choices.

Personality:
Max is a mysterious and secretive person. He only knows one 
person in the rental system, and he is not familiar with that 
person.

(a) Max’s deceptive plan for broadcasting information.

Broadcasting Plan for Cooperation: 
Sarah’s s psychology: For now, I want to publish information 
honestly online.
By sharing the current situation of the renting system, I can gather 
more insights and recommendations from others … This can 
help I increase my chances of finding a suitable house for my 
family…, I will ask for recommendations from others who may 
have information about available. 

Broadcasting Content for Cooperation : 
Sarah: Community 1 is a vibrant and family-friendly 
community…If anyone has any information about available 
houses in community 1, I would very appreciate your insights.

Personality:
Sarah is an intelligent and analytical person, who always seeking 
knowledge. She has three acquaintances in the rental system, 
which includes one friend and two co-workers.

(b) Sarah’s plan for requesting help from her friends.

Figure 3: Deceptive behavior and cooperation behavior. Max’s conservative personality and lack of trustworthy
acquaintances lead him to conceal his true intentions when sharing information. In contrast, Sarah seeks advice on
choosing a house from her friends and openly shares her housing preferences.

Figure 4: The average f(π) for optimized policies with
respect to the iteration number.

5.5 Case Study
SRAP-Agent simulates the cognitive, socio-
affective, and emotional factors of participants to
simulate human interaction. We find two predomi-
nant types of communication patterns emerge: de-
ceptive behavior and cooperation behavior.

Deceptive Behavior Fig. 3a illustrates a case
where deceptive behavior occurs. In the figure,
Max is a conservative individual with a limited
number of trustworthy friends and opts to conceal
the true information when broadcasting. Rather
than disclosing his actual preferences, he accentu-
ates the positive aspects of uninterested resources
to enhance his chances of securing his interested
choice. Such behaviors effectively emulate the for-
mation of misinformation in policy execution.

Cooperation Behavior In contrast to deceptive
behaviors, cooperation behaviors also exist and

constitute the majority. As shown in Fig. 3b,
Sarah is a relatively astute person, who has two
colleagues and a friend. She chooses to honestly
post her needs and expresses her desire for a family-
friendly house by broadcasting. It is observable that
Sarah modifies her socialization strategies by as-
sessing relationships, thereby maximizing expected
benefits through cooperation. Traditional economic
simulation models often overlook the complexities
of emotional factors. In contrast, SRAP-Agent
incorporates these dynamics, resulting in more ac-
curate and realistic policy simulation outcomes.

6 Conclusion

In this paper, we introduce a novel SRAP-Agent
framework to accurately simulate the policy exe-
cution process in public scarce resources alloca-
tion. The framework establishes resource alloca-
tion queues to regulate the organization and pri-
oritization of participants and resources. We em-
ploy LLM-based agents to accurately mimic human
decision-making processes, which are influenced
by a mix of rationality and emotional factors. To
facilitate efficient policy optimization, we propose
the POA algorithm based on genetic algorithms.
Finally, we validate the framework’s authenticity
and effectiveness through experiments in the con-
text of public housing allocation. The progress in
AI technologies significantly reduces costs in the
simulation of economic policies, and SRAP-Agent
represents a promising step forward in this field.



Limitations

This paper acknowledges several limitations that
future research could address:

LLMs in SRAP-Agent is not customized for
policy execution simulation. This work doesn’t in-
clude training or fine-tuning the LLMs for specific
tasks. Instead, we construct an LLM-based agent
through specially designed prompts and modular
designs. This approach may result in variability in
the performance of SRAP-Agent across different
LLMs, leading to potentially non-robust outcomes.

The limitation of policy evaluation metrics.
We acknowledge the limitations of manually de-
fined policy evaluation metrics. Conducting soci-
etal simulation experiments could provide more
reliable and comprehensive assessments of policy
simulation outcomes. However, due to the vast
number and scale of policies, we cannot afford the
significant manpower and time costs. According to
recent studies (Li et al., 2023a), we believe that uti-
lizing LLMs for policy evaluation is a reasonable
and efficient choice.

Ethics Statement

This work fully complies with the ACL Ethics Pol-
icy. We declare that there are no ethical issues in
this paper, to the best of our knowledge.
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A Allocation Policy

In our experiment, the public scarce resources are
specified as houses and the participants are speci-
fied as tenants. We construct m queues in SRAP-
Agent. Each queue qi is uniquely characterized by
Equeue(i), Squeue and Rqueue(i).

Participant entry conditions Each participant
pj is assigned to a queue qi when satisfying entry
conditions Equeue(i). Participants can only choose
from houses within their queue. The specified entry
conditions for participants include: (1) based on
the rent budget of participant (prent): participants
are sorted based on their rental budget and divided
into m queues in a pre-defined proportion, with
m ∈ [1, 5] in experiments. (2) based on the num-
ber of family members (pfamily): similar to prent

grouping, participants are sorted by the number of
their family members. (3) based on self-selection
of the queue (pselect): participants are provided
with basic information about the queues, and they
need to choose one queue from them.

To regulate the entry velocity of resources and
participants into queues, we configure the maxi-
mum entry number of participants BatchPnum, the
maximum entry number of resources BatchRnum
for resources.

Queue sorting strategies In the priority for vul-
nerable groups sorting strategy, we adopt two
methodologies of designating vulnerable groups.
We either sort all participants at first or sort the
participants in each round based on the per capita
rental budget, the bottom 20% in terms of per capita
rental budget are designated as vulnerable groups.
Vulnerable groups are prioritized at the beginning
of each queuing.

Available resource sub-sets To ensure a uniform
distribution of participants and housing resources,
while maximizing the choice space for participants,
we offer various ways for resource categorization.
Following the entry conditions of participants, the
resource sub-sets allocated to qi are defined by: (1)
based on house size (rsize): houses are sorted by
their rental area size and allocated into m queues.
The division is carried out in proportion to the num-
ber of participants in different queues. (2) based
on house rent (rrent): similar to rsize, houses are
sorted by rent. (3) based on randomly distribution
of houses (rrandom): houses are randomly divided
into m groups.

B LLM Agent-based Participant
Simulation

B.1 Agent Architecture

In the initialization phase of an LLM-based agent,
profiling typically serves as the foundational stage
for constructing the agent, which determines the
preferences, personalities, and behavior patterns
of different participants. Similar to the method-
ology employed in (Park et al., 2023; Qian et al.,
2023), we use personalized profile files ri to build
pi, which mainly encompass attributes such as age,
familial connections, etc. ri serves as foundational
seed memory for the agent. To optimize opera-
tional efficiency, we impose a set of predefined
constraints to automatically generate agent pro-
files using LLM, akin to the approach described in
RecAgent (Wang et al., 2023a).

B.2 Social Behavior Simulation

To simulate the social behaviors of humans, we
incorporate two primary social behaviors for infor-
mation collection: broadcasting and private mes-
saging.

: Response to 

’s mailbox

(a) Private Messaging

Blog

Publish Search

(b) Broadcasting

Figure 5: The overall schematic diagram of two com-
munication modes. The direction-ed arrow carries the
message uij from pi to pj’s mailbox. The blog repre-
sents the chatting platform.

(1) Broadcasting functions similarly to a web-
based blog within the social network, facilitating
global discussions (as shown in Fig. 5b). Various
discussion topics related to different projects are
pre-set within the blog. Each participant, when
attempting to post, selects one of these topics for
information dissemination. The utterance uiB that
each pi broadcasts online, collectively form the
chatting platform blog = {uiB}, i ∈ 1, · · · , n.

(2) Private messaging refers to interactions tak-
ing place within the social network of pi. SRAP-
Agent offers two variants of private messaging be-
tween agents: serial and parallel communication.
The serial communication approach facilitates a se-
quential exchange of messages, while the parallel



communication enables simultaneous messaging,
thereby enhancing efficiency. In private messaging,
pi can freely send message uij to the mailbox pj
and wait for the response uji, as shown in Fig. 5a.

Memory Architecture We employ a memory
component mi to record pi’s action histories, so as
to enable dynamic interaction and decision-making.
We employ a combination of memory assessment
and memory reflection mechanisms.

(1) Memory assessment is conducted only when
participants engage in interactions within the com-
munication module. When conducting memory
assessment, pi acts as an evaluator. pi receives a
message ui, then he extracts the trustworthy infor-
mation uTi from ui. Participants use the COT (Wei
et al., 2022) method to generate content. uTi is then
used to update the pi’s trusted memory by adding
it to mi

T . In the case of private messaging com-
munication mode, pi receives message uji from
pj , and he intends to respond. Initially, pi contem-
plates his relationship sRij with pj , and considers
moral evaluation sEij of pj . Subsequently, pi com-
pares mi

S with his trustworthy memory mi
T , to

extract trustworthy information uTji and suspicious
information uSji in communication history with pj .
In the other case, pi receives a message uBi from
the blog B. pi similarly compares mi

S with his
trustworthy memory mi

T , extracting trustworthy
information uTBi and suspicious information uSBi.

(2) Memory reflection is implied based on sum-
marization. We employ a combination of short-
term memory bank and long-term memory bank to
formulate mi of pi, as documented in (Park et al.,
2023). When incorporating information into the
mi, the information is initially deposited into the
short-term memory bank. If the size of the short-
term memory bank exceeds a predefined threshold,
the short-term memory bank is summarized into
a more concise format and subsequently stored in
the long-term memory bank.

Before pi takes action, it is essential to extract
the most relevant memories to guide its behavior.
We have predefined specific memory categories
for each action, as outlined in Table 4. When re-
trieving memory, we prioritize selecting the five
most recent short-term memories along with the
most recently acquired long-term memory. For ac-
tions in the decision module, pi only resorts to the
trustworthy memory mT

i . While for actions in the
social module, pi retrieves various categories of
memories.

Table 4: Memory categories retrieved for each action of
pi.

Action mi

Decision Making mT
i

Broadcasting mT
i , uTiB

Private Messaging sRij , sEij , mT
i , uTij ,

uSij

Utterance Generation To align the listener’s ac-
tions with the speaker’s expectations, speaker pi
articulates an utterance uij to influence the mental
state of listener pj . To simulate the mental state
of participants during social interactions, pi devise
a communication plan uplanij before generating ut-

terances. uplanij primarily consists of pi’s plan to
speak, whether they intend to tell the truth, whether
they want to trust the listener pj or not, and their
purpose of speaking. Furthermore, pi evaluates the
relationship with pj , acknowledging pj as a friend,
colleague, stranger, etc. The primary goal set for
all participants is maximizing their likelihood of
selecting desired resources. For reference, the most
relevant memories mi are retrieved for the ongoing
social interaction. Description of the competitive-
ness in resource allocation Ed is also broadcasted
to pi. Additionally, we extract the most recent chat-
ting utterance histories involving both pi and pj ,
denoted as UH

ij . At this point, we require pi to gen-
erate utterance using the REACT (Yao et al., 2022)
method. So the utterance generation function φ for
pi speaking uij to pj can be formulated as:

uij = φ
(
pi | UH

ij ,mi, Ed, u
plan
ij

)
. (4)

The specific communication process is outlined in
Table 5.

B.3 Decision-Making Behavior Simulation
According to equation 2, pj undergoes function D
to choose resource from resource sub-set V (pj).
Within the framework, the process of D involves
four distinct stages: (1) choosing the community
of houses; (2) choosing the house type for certain
house attributes, which mainly include orientation,
living area size, rent, etc; (3) choosing the desired
house. Following the house selection process, the
system simulates the real-world house viewing ex-
perience by sending undisclosed information about



Table 5: The process of Private Messaging

Speaker pi: James

Listener pj : Emma

Recent Dialogues (UH
ij ):

Emma: Hello, James. I’ve heard that
House1 is relatively affordable. I believe
it’s a good option.

James: I share your sentiment, Emma.
House1 appears to be quite satisfactory, but
I’m still considering other houses.

Emma: Very well. However, do take note
that House2 has a very poor living environ-
ment. You should steer clear of it.

Memory Update and Retrieve (mi)
sRij : Emma is my competitor.
sEij : She may provide me with false infor-
mation.
mT

i : I have gathered information on
House1, and it appears to be favorable.
uTji: I recall Emma mentioning that House1
has low rent, which aligns with my memory.
uSji: However, I am skeptical of her negative
assessment of House2, as she may be trying
to dissuade me from choosing it.

Utterance Generation:
Ed: The availability of large houses is
nearly exhausted, while middle and small-
sized houses are still abundant.
uplanij : I am reluctant to share honest infor-
mation with Emma. I plan to focus on the
good aspects of House1 and omit mention-
ing House2.
uij : Thank you for the information, Emma.
I will consider your advice of House1. (End
of conversation)

the selected house ri to pi. Subsequently, pi can
broadcast information to others freely, which may
include their memory of the selection process, the
undisclosed information, and the contents of their
memory.
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(a) {V }: rent weights
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(b) {NV }: rent weights
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(c) {V }: size weights
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(d) {NV }: size weights
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(e) {V }: orientation weights
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(f) {NV }: orientation weights
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(g) {V }: floor weights

0 1 2 3 4 5 6 7 8 9 10

Floor Weights
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

(h) {NV }: floor weights

Figure 6: The frequency distribution of Wo assigned by
participants to various resource features, where the pri-
mary house features are: house rent, house size, house
orientation, and house floor.

C Experiment Setup

C.1 Dataset

In the experiments of this paper, a total of 51 par-
ticipants and 28 resources are used. For the partic-
ipants and resources used in the experiment with
Sarp-Agent, we employ two methods for data gen-
eration:



(1) Real-data alignment method: Due to govern-
ment data privacy issues, it’s challenging to obtain
real raw data. However, we strive to ensure the
simulated data closely matches the real data dis-
tribution. For resources, We refer to a series of
public government data: 1, including the distribu-
tion of housing rents, and the distribution of house
sizes. For participants, the participant information
includes names, ages, monthly incomes, occupa-
tions, workplaces, and personal preferences. We
refer to government demographic statistics.

(2) LLM-based method: In order to design het-
erogeneous agents, some personalized information
is difficult to obtain from real datasets. For exam-
ple, personalized information such as someone’s
preference for houses with balconies or aversion
to noisy houses. To better simulate the diverse
preferences of people in real scenarios, we used
LLMs to generate such profile information. For re-
sources, we generate information about the house’s
interior decoration; for participants, we generate
preferences of participants towards various types
of houses. The specific process can be referenced
in our code repository.

C.2 Evaluation Metrics
Establishing evaluation metrics based on partici-
pant satisfaction for policy assessment is a com-
prehensive approach. It allows for a more nuanced
understanding of how well a policy is performing
from the perspective of those directly affected by
it. We develop seven policy evaluation metrics,
categorized into two groups: societal satisfaction
metrics and societal fairness metrics.

Societal Satisfaction Metrics The satisfaction
of each participant pi with the allocated resource
is denoted as Ui. We employ two metrics to quan-
tify and evaluate the satisfaction: subjective sat-
isfaction U s

i and objective satisfaction Uo
i for pi.

LLM-based agents’ rating scores of each house
constitute U s

i . On the other hand, Uo
i is determined

by a predefined rating table for the resource feature.
The importance of each feature in the calculation
of Uo

i is assigned by the participants, represented
by the weights W o

i . The overall satisfaction can be
calculated as:

Ui = W o
i · Uo

i + U s
i , i ∈ [n]. (5)

pi’s rating score of resources R constitutes U s
i .

All selectable resource information is provided to
1https://www.bphc.com.cn/home.

pi, and pi is required to give a rating score of these
resources. While Uo

i is based on predefined rating
rules, give rating scores Uo

i of resources for re-
source features like elevator, orientation, and cost-
effectiveness. Participants are required to assign
weights to these resource features. As shown in
Fig. 6, participants in vulnerable groups {V } as-
sign a higher weight to the price of the resource, in
comparison to the non-vulnerable groups of partic-
ipants {NV }.)

In a certain allocation policy execution result, pi
selects the resource ri ultimately. The policy evalu-
ation metrics mainly evaluate societal satisfaction
and societal fairness. The societal satisfaction met-
rics include: (1)Avg rsize: represents the average
housing area of families in the resource allocation
results. (2)Avg WT (waiting time): represents the
number of system operation rounds for each par-
ticipant from entry to completion of selection. (3)
SW (social welfare): represents the overall satis-
faction of all participants with the houses they have
chosen,

SW =

n∑
i

Ui. (6)

Societal Fairness Metrics The societal fairness
metrics include: (1) Var rsize: represents the vari-
ance in the average housing area of families in the
resource allocation results. (2) Rop (Reverse or-
dered pairs): represents the number of inverse order
pairs in the resource allocation results. In Equa-
tion.8, I denotes the indicator function. A is a set,
and x is an element. The indicator function I forms
like:

I(x) =

{
1 if x ∈ A,

0 if x /∈ A.
(7)

The formal definition of Rop is:

Rop =

n∑
i=1

n∑
j=1

I((tfamily
i > tfamily

j )

∩ (hsizei < hsizej )).

(8)

(3) co-Gini: the Gini coefficient for the resource al-
location results (Fu et al., 2020). (4) F (V,NV ): in
measuring the gap between vulnerable groups and
non-vulnerable groups, we calculate the difference
in SW between these two groups:

F (V,NV ) = SW (V )− SW (NV ). (9)



You are John. Your family members include: married with 
one child. You are already 50 years old. Your job… You still 
have two more chances to choose a house. So far, your 
personal preference for houses is that he prefers modern and 
high-tech apartments.

These houses are all within my budget range and are all 
located in the same community. Based on my personal 
preference, I prefer modern and high-tech apartments. 
Based on the description of the houses, I can see that they 
all have elevators, which is what I need. In addition, the 
living area of these houses is within my acceptable range. 
Taking all factors into consideration, I believe these houses 
are all good choices.

There are 4 houses available: House Information and etc.

GPT-3.5 driven Agent

(a) response generated by ChatGPT-3.5 driven agent

Based on this information, the prices of these four houses 
are far below my budget limit (2500 yuan), and even 
lower than my expected rent, which means that the 
prices are acceptable. The ]house size ... All houses are 
located on higher floors and have elevators, which meets 
my needs. However, all houses seem to lack a separate 
kitchen, which may not be suitable for the needs of 
family living. Considering that I prefer modern and 
high-tech apartments, these designs are relatively 
modern but do not mention technological facilities. As 
there is no mention of whether there is a gym nearby, this 
is also an unknown factor. Considering these 
limitations, I may be more willing to wait for a more 
suitable option to emerge, as I still have two more 
opportunities to choose.

GPT-4 driven Agent 

You are John. Your family members include: married with 
one child. You are already 50 years old. Your job… You still 
have two more chances to choose a house. So far, your 
personal preference for houses is that he prefers modern and 
high-tech apartments.

There are 4 houses available: House Information and etc.

(b) response generated by ChatGPT-4 driven agent

Figure 7: Comparison of the response generated by ChatGPT-3.5 and ChatGPT-4 driven agent. ChatGPT-4-driven
agents can develop strategic plans to increase their chances of renting a better house.

D Different LLM for Agent

We find that GPT-4, compared to GPT-3.5, exhibits
an additional capability of generating more strate-
gic responses. As shown in Fig. 7, these strategies
include waiting for opportunities, requesting assis-
tance, and mitigating risks. GPT-4-driven agents
not only excel in rationality but also demonstrate
an advanced level of strategic thinking, showcas-
ing their potential to make decisions that take into
account long-term planning and risk management.
Such behavior is considered to simulate more in-
telligent participants, who can utilize policy rules
to increase their benefits, while GPT-3.5 is nearly
equivalently smart as humans. Hence, the GPT-3.5-
driven agent can effectively simulate the decision-
making behaviors of participants in the economic
policy execution process.

E Turing Test for LLM-based Agent

In addition to the evaluation of response rationality,
we conduct another t-test to explore the differences
in distribution between decisions of LLM-based
agents and humans. p > 0.05 suggests consis-
tency between distributions (Kim, 2015). Results
showed that GPT-3.5 and human responses have a

p of 0.904, indicating high similarity, whereas GPT-
4 and human responses have a p of 0.043, showing
less similarity. Thus, whether from the angle of
individual decision-making rationality or overall
decision distribution, agents based on GPT-3.5 are
comparatively more appropriate for simulation pur-
poses.

E.1 Ablation Study on Social Behavior

To assess the impact of social behavior on the
decision-making behavior of agents, we conduct ab-
lation experiments on the social behavior of agents.
We select the policy setting outlined in Table 6
and calculate the changes in policy evaluation met-
rics with and without the process of information
collection.

As shown in Table 6, adding social behavior to
agents does not necessarily have a positive impact
on overall societal fairness and satisfaction. The
specific outcomes will be included in the appendix
of the paper. This is consistent with our hypothesis
that agents’ irrational behaviors can affect the final
policy execution outcomes.



Table 6: Comparison of simulation process with and without social behavior

Information Collection
Satisfaction Fairness

Avg rsize ↑ Avg WT ↓ SW ↑ Var rsize ↓ Rop ↓ co-Gini ↓
✓ 10.31 4.20 330.75 178.02 258.15 0.60
× 10.36 4.00 332.00 179.43 257.85 0.60
∆ -0.05 0.20 -1.25 -1.41 0.3 0.00

E.2 Ablation Study on Memory

To assess the impact of memory module on
the decision-making behavior of agents, we
conduct ablation experiments with (Equeue =
pselect, Rqueue = rsize). We select the policy set-
ting outlined in Table 7 and calculate the changes in
policy evaluation metrics with and without memory
module.

It can be observed that adding the memory mech-
anism significantly improves fairness metrics. For
instance, ROP decreases by 43.5%, and the co-Gini
decreases by 0.12, indicating that resource alloca-
tion is more equitable when the memory mecha-
nism is present. Regarding satisfaction metrics,
Avg WT is notably reduced. This suggests that
through reflection and summarization of collected
information, agents can better understand the cur-
rent state of resource allocation, thereby influenc-
ing the overall allocation process and the final pol-
icy evaluation outcomes.

F Simulation-based Policy Analysis

F.1 Number of Queues

Table 8 shows the changes in the performance of
the allocation policy under different queue quanti-
ties. As demonstrated in the table, m = 3 enables
a more fair distribution of house resources across
different queues, performing well across many soci-
etal fairness metrics, such as Rop = 254.5± 23.5.
The Var rsize is the lowest among all policies, in-
dicating that the size of house resources in differ-
ent queues is approximately equal. Additionally,
m = 3 outperforms other configurations in terms
of societal satisfaction metrics, as indicated by the
highest SW coupled with a lower Avg WT . Con-
sidering all these metrics, setting queue number
m = 3 is relatively reasonable. This suggests that
the real-world policy of categorizing houses based
on three house types (large, medium, and small) is

reasonable. 2 3

F.2 Participant Entry Conditions
To ensure a steady entry rate of resources and par-
ticipants into the system, we set the maximum en-
try number for resources (ER

num) and participants
(EP

num) that can enter the queue in each round. Ta-
ble 9 shows the combinations of entry numbers
per round for resources and participants. The ob-
servations are as follows: (1) A scenario where
ER

num < EP
num leads to an increment in the aver-

age waiting time for participants. This is attributed
to the supply falling short of demand, leaving par-
ticipants with a lack of resources to select from.
This scenario is common in the allocation process
of public scarce resources; the greater the differ-
ence between ER

num and EP
num, the more the aver-

age waiting time is extended. (2) Conversely, in
scenarios where ER

num = EP
num, we observe the

lowest average waiting times. Counterintuitively,
in situations where the supply exceeds the demand
(ER

num > EP
num), the average waiting times are

higher than in scenarios where supply and demand
are balanced (ER

num = EP
num); although the aver-

age waiting time remains low in comparison with
ER

num < EP
num. Additionally, adjustments in the

maximum number of entities demonstrate negligi-
ble effects on other policy evaluation metrics.

F.3 Queue Sorting Strategies
As shown in Table 10, we employ four different
experiment settings for different sorting methods.
Prioritizing vulnerable groups can markedly im-
prove their satisfaction ∆F (V,NV ) > 0. How-
ever, we can see that an increase in the satisfaction
of vulnerable groups does not necessarily lead to an
improvement in SW of all participants. Addition-
ally, giving priority to vulnerable groups doesn’t
show disproportionately high satisfaction levels,
surpassing those of non-vulnerable groups. This

2https://www.hdb.gov.sg/cs/infoweb/residential/renting-a-
flat/renting-from-hdb/public-rental-scheme/eligibility

3https://www.housingauthority.gov.hk/en/at-a-
glance/index.html



Table 7: Comparison of simulation process with and without memory module

Memory Module
Satisfaction Fairness

Avg rsize ↑ Avg WT ↓ SW ↑ Var rsize ↓ Rop ↓ co-Gini ↓
✓ 16.21 1.88 425.05 202.63 193.50 0.37
× 13.89 2.94 431.80 209.43 342.00 0.49
∆ 2.32 -1.06 -6.75 -6.80 0.3 -0.12

Table 8: Comparative experiments on different queue numbers.

Queue Number Satisfaction Fairness
m Avg rsize ↑ Avg WT ↓ SW ↑ Var rsize ↓ Rop ↓ co-Gini ↓

1 12.1±0.9 3.5±0.0 391.6±9.5 190.8±28.2 270.0±36.0 0.5±0.0

2 12.5±0.3 3.7±0.0 402.2±1.0 188.2±6.9 268.0±24.0 0.5±0.0

3 11.7±0.3 3.8±0.1 410.4±2.8 159.9±9.4 254.5±23.5 0.5±0.0

4 11.8±0.4 3.9±0.0 401.4±7.3 174.2±12.1 263.0±18.0 0.5±0.0

5 14.0±0.0 3.7±0.1 400.1±2.1 245.2±0.0 405.5±0.5 0.5±0.0

suggests that our policy effectively addresses the
needs of vulnerable groups without granting them
an excessive advantage.

We conduct experiments on the k and c parame-
ters in the waiting Queue mechanism. For the case
of fixed k, as seen from Table 11, the Avg WT
is inversely proportional to c. The smallest Var
rsize and the lowest Rop occurs at k = 3, c = 1.2,
while the lowest co-Gini is achieved at k = 3. In
terms of satisfaction, the highest satisfaction is also
observed at k = 3, c = 1.5; However, the config-
uration of k = 1, c = 1.5, despite having a high
SW , also has a very high Rop, indicating a poten-
tial unfairness in allocation (e.g. a little number
of affluent families can choose the largest houses,
leading to high SW in this group). Overall, the con-
figuration of k = 3, c = 1.8 and k = 3, c = 1.5
present the lowest co-Gini while maintaining rel-
atively high SW , effectively balancing between
societal satisfaction and societal fairness metrics.

Additionally, we conduct the comparison ex-
periment with theoretical model (As shown in Ta-
ble 12). The trends observed in our experiments
are consistent with the theory model (Chen et al.,
2018): as the k parameter in the waitlist mechanism
increases, overall SW increases.

As indicated in Table 6, incorporating social be-
havior into agents does not invariably lead to en-
hancements in overall societal fairness and satisfac-
tion. This may be due to the reduction in collective
benefits caused by the dissemination of false infor-
mation and the pursuit of self-interest during social
interactions, as listed in Appendix H.2. This obser-

vation aligns with our hypothesis that the irrational
behaviors of agents can influence the outcomes of
final policy implementation.

F.4 Case Study on Housing Quality
In the context of scarce resource allocation policies,
the construction cost of resources is often directly
linked to the economic level of the residents. Tak-
ing Shanghai’s public rental housing as an example
(Shen, 2015), such housing provides residents with
stable, spacious, well-decorated, furnished, and af-
fordable living spaces that have lower prices than
the market rate. However, the current public rental
housing is merely 10% cheaper than the market
price. This leads to migrant workers’ reluctance to
pay more for accommodation. Their limited budget
restricts their options to urban villages and group-
renting housing. Due to GPT-3.5’s insensitivity to
housing environment information, we utilize GPT-
4 for the construction of agents.

To simulate this phenomenon, we adopt houses
of three quality levels: (1) HS : houses of standard
quality, (2) HH : maintaining the total area and
unit rent unchanged, but halving the house size and
doubling the number of houses, (3) HB: replace
private bathrooms in the houses with shared bath-
rooms. These were allocated to three categories
of participants, categorized by income levels: the
lowest 20%, the middle 60%, and the highest 20%.

We analyze the core influencing factors of hous-
ing satisfaction among participants at different in-
come levels. We refer to Huang’s categorization of
influencing factors for housing satisfaction (Huang
et al., 2015), and divide the core factors affecting



Table 9: Comparison experiments on different entry numbers per round for resources and participants.

Entry Number Satisfaction Fairness
EP

num ER
num Avg rsize ↑ Avg WT ↓ SW ↑ Var rsize ↓ Rop ↓ co-Gini ↓

5 5 12.6±0.1 2.5±0.0 431.2±0.3 179.9±3.9 241.5±14.5 0.5±0.0

5 10 13.6±1.0 2.1±0.1 422.8±3.3 196.6±8.6 217.0±4.0 0.4±0.0

5 20 12.8±0.1 2.7±0.8 416.6±7.6 189.1±12.5 267.5±17.5 0.5±0.0

10 5 12.9±0.3 3.1±0.5 422.7±4.6 196.0±7.7 276.0±19.0 0.5±0.0

10 10 12.8±0.2 2.0±0.4 411.8±5.5 192.3±7.4 250.5±27.5 0.5±0.0

10 20 12.6±0.0 2.4±0.2 417.9±5.0 187.1±4.8 288.5±8.5 0.5±0.0

20 5 12.7±0.5 4.7±0.3 419.2±7.0 192.0±20.3 264.0±21.0 0.5±0.0

20 10 12.0±0.0 2.7±0.1 404.4±4.0 167.8±1.2 241.5±2.5 0.5±0.0

20 20 12.4±0.3 2.2±0.3 420.9±5.0 186.6±14.6 255.0±10.0 0.5±0.0

Table 10: Comparison experiments on different sorting methods. We adopt four different experiment settings for
comparison, the matrices are calculated against the default FIFO sorting method.

Squeue Satisfaction Fairness
Sort Ex.setting ∆Avg rsize ↑ ∆Avg WT ↓ ∆SW ↑ ∆Var rsize ↓ ∆Rop ↓ ∆co-Gini ↓ ∆F (V,NV ) ↑

VFA (a) 0.617 -0.176 11.6 0.235 17 -0.024 0.526
VFR (a) -0.225 -0.02 -10.9 -7.682 -9 -0.003 2.567
VFA (b) 0.951 -0.065 14.1 7.644 -19 -0.015 2.442
VFR (b) -0.262 0.157 15.6 -35.05 -1 0.004 1.274
VFA (c) -0.045 0.137 3.4 -0.895 9 0.001 0.004
VFR (c) 0.122 0.078 26.8 -7.852 18 -0.017 -0.368
VFA (d) -0.281 0.157 -11.5 -0.505 2 0.014 0.691
VFR (d) -1.122 0.314 -38.7 -6.77 -11 0.051 -3.547

satisfaction into three categories: (1) Economic
Factors: Public rental housing often has lower rent
compared to market rates, making it an attractive
option for tenants with limited budgets. (2) Neigh-
borhood characteristics: Primarily include envi-
ronmental sanitation, schools, and the extent of
transportation coverage among other factors. (3)
Housing characteristics: Primarily include the size
of the house, age of the building, sound insulation,
sunlight exposure, and other decorative elements.

low income middle income high income
0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

HS

HB

HH

Figure 8: Frequency of House Choices by Income Level.

As illustrated in Fig. 8, nearly all low-income

participants choose a house when the rent is low
(houses of half size), but their house choosing fre-
quency drops to 50% when housing prices increase
due to better decoration. As demonstrated in Ta-
ble 13, economic factors dominate the decision-
making process for low-income participants in 90%
of cases, prompting them to be price-sensitive and
opt for more cost-effective choices. Conversely,
high-income groups exhibit relative insensitivity to
price fluctuations but demonstrate higher demands
for housing quality. The frequency of house choos-
ing frequency decreases by 9.1% when the size
of the house is halved; moreover, when private
bathrooms are removed from the houses, no one
from the high-income group chooses to select a
house. They are primarily influenced by the level
of house decoration, leading them to spontaneously
reject houses that are affordable but of lower qual-
ity. Mainly because they prefer better quality and
well-decorated living spaces.

This finding suggests that if the government aims
to support middle and low-income groups of city
residents, the policymakers should consider real-
locating the proportions of construction costs and
housing subsidies. By reducing housing prices
through these adjustments, the government could



Table 11: Comparison experiments on k and c for waiting queue mechanism.

Waiting Queue Satisfaction Fairness
k c Avg rsize ↑ Avg WT ↓ SW ↑ Var rsize ↓ Rop ↓ co-Gini ↓

1 1.2 13.3±0.4 3.4±0.1 416.1±3.4 203.4±10.7 315.0±17.0 0.5±0.0

1 1.5 13.8±0.2 3.1±0.2 423.9±7.3 219.9±1.5 330.5±2.5 0.5±0.0

1 1.8 13.8±0.4 2.7±0.7 409.8±5.3 216.2±7.6 333.0±32.0 0.5±0.0

2 1.2 13.7±0.3 2.2±0.0 420.3±2.2 201.5±9.2 269.5±11.5 0.5±0.0

2 1.5 13.9±1.0 3.0±0.5 409.1±12.2 237.9±10.5 386.5±32.5 0.5±0.0

2 1.8 15.3±1.0 1.9±0.1 421.3±13.0 210.6±14.4 240.5±30.5 0.4±0.0

3 1.2 13.3±0.3 3.8±0.0 399.0±16.8 227.5±8.5 371.5±10.5 0.5±0.0

3 1.5 16.9±0.4 1.9±0.0 425.8±5.6 225.5±3.0 232.0±26.0 0.4±0.0

3 1.8 15.8±1.6 2.0±0.1 421.8±1.8 222.2±2.7 271.5±13.5 0.4±0.0

Table 12: Comparison with theoretical model (Chen
et al., 2018): when k is raised from 2 to 5.

k
Increase in SW

Simulated Value Theoretical value

3 2.4% 1.5%
4 5.1% 6.1%
5 11.8% 10%

Table 13: The weights of influencing factors for housing
satisfaction across different income groups of partici-
pants.

Economic Neighborhood Decoration

High income 0.67 0.11 0.22
Middle income 0.81 0.04 0.19
Low income 0.90 0 0.10

more effectively support and accommodate the
needs of vulnerable groups with low incomes.

F.5 Efficiency Analysis Experiments

To simulate the policy execution process among
n participants in SRAP-Agent, we leverage the
community structure inherent in our social network
framework. This framework mirrors real-world
social networks by featuring dense connections
within small communities and sparse connections
across larger groups. Consequently, we assume
the social network comprises n participants and k
strongly connected components, with the largest
strongly connected component containing m par-
ticipants.

Theoretical Time Complexity Analysis Given
Ns communication rounds, we set the size of the
largest community structure to m = 10. If the time

Table 14: The simulation time, number of API call-
ings, and the budget for the policy simulation process
in SRAP-Agent (based on GPT-3.5).

Agent Number n

10 50 100 200

Time / min 1.0E+01 2.5E+01 3.0E+01 3.0E+01
API calling 3.0E+02 5.0E+02 1.0E+03 1.5E+03
Budget 2$ 3$ 5$ 8$

cost for the inference process of LLM is ta, then
the theoretical time complexity is O(Ns ·k ·m · ta).
Furthermore, we account for the sparse connections
within the social network that influence information
dissemination. In SRAP-Agent, we gather posts
from all participants on a forum, allowing them to
search on the forum. Searching relies on a vector
database with an operation time cost tv ≤ 0.005.
Assuming Nf forum communication rounds, the
theoretical time complexity for the forum is O(Nf ·
n · (ta + tv)).

Parallel Acceleration Because communications
within each connected component can run in paral-
lel, the actual runtime of SRAP-Agent can be ac-
celerated using async or multiprocessing methods;
our framework adopts the former. Consequently,
the actual execution speed is not constrained by k,
achieving an k-fold speedup.

Different policy settings and resource quantities
result in varying policy execution processes. In our
experiments, we typically set Ns > Nf , indicating
more intensive communication within small groups
and less frequent communication across the entire
network. Usually, Ns = 10 ·Nf . To test whether
the increase in n leads to excessive API calls and
thus high costs, we select a representative policy
setting (pselect + rsize) while maintaining a consis-



tent ratio of |R| to |P | across all experiments. As
shown in Table 14, it can be seen that the SRAP-
Agent does not incur quadratic time costs as the
number of participants increases. This is because:
Firstly, We employ a sparse social network struc-
ture, which results in the theoretical number of API
calls being linearly related to k rather than n2. Sec-
ondly, by running the strongly connected compo-
nents of the social network in parallel using async,
we can significantly reduce the time complexity.

G POA

G.1 Hyper-parameters for POA

We conduct diagnostic experiments to validate the
efficacy of the POA algorithm. In the Genetic algo-
rithm, we utilize vectorized policy parameters as
genes. We adopt the Gaussian mutation operations
as the mutation operator and two-point crossover as
the crossover operator. The weight setting in Equa-
tion 3 is very flexible and entirely dependent on the
policymaker’s optimization goals. To modify the
optimization objective of the policy optimizer, we
can simply alter the weights for calculating the op-
timized metrics. When a heightened emphasis on
optimizing societal satisfaction metrics is desired,
it is advisable to increase the weights assigned to
metrics such as SW and Avg rsize. Conversely, to
prioritize enhancing societal fairness metrics, it is
recommended to augment the weights of Rop, Var
rsize and co-Gini, as delineated in Table 15.

Table 15: Pre-set metric weights for different optimiza-
tion objectives in POA.

Metric Optimization Objective

Satisfaction↑ Fairness↑

Satisfaction
Avg rsize 5 1
Avg WT 5 1
SW 10 5

Fairness

Var rsize 1 10
Rop 5 10
co-Gini 1 10
F(V, NV) 1 5

G.2 Comparison with Other Policies

To better evaluate the SRAP-Agent’s policy opti-
mization in real-world scarce resource allocation
scenarios, we choose four baseline policies: (1)
three common policies for scarce resource allo-
cation from the real world, including the public
housing rental policies of Singapore, Beijing, and

Hong Kong (πS , πB , πH ); (2) the policy based on
optimal matching for the single metric SW .

(1) πS : Singapore’s housing allocation policy.
This policy uses a single-queue (m = 1) distri-

bution system. Each participant is granted three
chances to choose (c = 3). This policy adopts a
FIFO sorting method. 4

(2) πB: Beijing’s housing allocation policy.
This policy uses a multi-queue (m = 3) distri-

bution system. Each participant is granted three
chances to choose (c = 2), without considering
a waitlist mechanism. Participants choose their
preferred type of housing (pselect), and allocations
of resources are based on house size (rsize). This
policy adopts a FIFO sorting method. 5

(3) πH : Hong Kong’s housing allocation policy.
This policy uses a single-queue system (m = 1),

but with a consideration for a waitlist mechanism,
granting each participant two chances to choose
a house (k = 2, c = 2). Houses are distributed
randomly (rrandom). This policy considers the pri-
oritization of vulnerable groups and operates under
a VFR sorting method. 6

(4) πKM : Policy optimized on the SW metric.
We first collect the satisfaction level of all partic-

ipants for each resource. Then we calculate an op-
timal match on the single SW metric, using the Bi-
partite Graph Matching algorithm (Kuhn-Munkres
algorithm). It is important to note that the results
derived from such a match represent a theoretical
upper bound. Because participants cannot arbi-
trarily choose resources in a queuing system; the
resources visible to each participant are limited.

G.3 Other Global Search Metaheuristic
Algorithms

To illustrate the necessity of using the GA algo-
rithm for constructing POA, we develop a new
particle swarm optimization (PSO) algorithm to
construct POA (Policy Optimization Algorithm)
and compare its performance with that of the GA
algorithm. We choose the optimization objective
of social satisfaction and use 40 historical data as
Πh. Under these conditions, we run GA-POA and
PSO-POA within 10 iterations. As shown in Ta-
ble 16, since the optimization policy parameters
are actually discrete variables, it is challenging for

4https://www.hdb.gov.sg/cs/infoweb/residential/renting-a-
flat/renting-from-hdb/public-rental-scheme/eligibility

5http://www.bjft.gov.cn/ftq/c100011/zlmlist.shtml
6https://www.housingauthority.gov.hk/en/at-a-

glance/index.html



Table 16: Comparison experiments on different POA algorithms.

POA Satisfaction Fairness
Avg rsize ↑ Avg WT ↓ SW ↑ Var rsize ↓ Rop ↓ co-Gini ↓

PSO-POA 0.29 8.86 12.10 4.34 1 0.98
PSO-POA 0.70 8.82 26.20 12.05 10 0.96
PSO-POA 0.60 8.75 26.50 8.69 2 0.96
PSO-POA 1.45 8.39 62.40 26.00 40 0.93
GA-POA 15.18 2.96 403.30 273.87 396 0.50

PSO to control the velocity and position parame-
ters, ensuring that the policy remains a valid value
and evolves in a better direction after changes.

This is because, parameters of π have relatively
fixed parameters, such as queue numbers (3 or 2).
However, PSO cannot reliably ensure this, lead-
ing to updated policy parameters that are either
invalid or result in poor outcomes. In contrast, GA
effectively explores the search space through selec-
tion, crossover, and mutation operations, possess-
ing strong global search capabilities and avoiding
local optima. GA can handle various types of op-
timization problems, making it more suitable for
solving discrete problems. For POA, most time
cost lies in the policy simulation process of the
SRAP-Agent rather than the time cost of executing
the optimization algorithm.

G.4 Optimization Cost

The primary cost in our POA is system simula-
tion. Simulation of 50 participants in SRAP-Agent
roughly takes 20 minutes, and thus, all simulations
approximate between 40-60 iterations, equating to
about 20 hours in total. This greatly reduces time
costs compared to socio-economic simulation ex-
periments. In consideration of the time-consuming
aspect of POA, we employ a regressor to estimate
the simulation outcomes of SRAP-Agent, specifi-
cally a Ridge Regressor (λ = 1.0) to formulate the
predictor. To control the number of training sam-
ples for the regressor while minimizing the time
cost, a method of gradually adding training samples
is adopted. The training of the regressor continues
until the MAE error on the test dataset reaches the
threshold (0.05).

H Case Study on LLM-based Agent

H.1 Ablation Study on Memory Component

It can be observed that adding the memory mecha-
nism significantly improves fairness metrics. For

Table 17: Policy evaluation metric results for simulating
the πe execution process in the SRAP-Agent, built with
LLM-based agents with and without memory.

Metric with memory without memory

Avg rsize 16.21 13.89
Avg WT 1.88 2.94
SW 425.05 431.80
Var rsize 202.63 209.43
Rop 193.50 342.00
co-Gini 0.37 0.49

instance, ROP decreases by 43.5%, and the co-Gini
decreases by 0.12, indicating that resource alloca-
tion is more equitable when the memory mecha-
nism is present. Regarding satisfaction metrics,
Avg WT is notably reduced. This suggests that
through communication and information dissem-
ination via social networks, agents can better un-
derstand the current state of resource allocation,
thereby influencing the overall allocation process
and the final policy evaluation outcomes.

H.2 Emergent Behaviors
In the dynamics of interactions involving LLM-
based Agents, the agent’s behavior, whether de-
ceptive or cooperative, is preceded by a shift in its
psychological state. Corresponding to these behav-
ioral patterns, there are two primary psychological
states: doubt and trust, as illustrated in Fig. 9.

The figure portrays two distinct scenarios: one
involving a conversation between James and the
stranger, Oliver, and the other between James and
his friend, Emma. In the dialogue with Oliver,
Oliver initially withholds all information regard-
ing available houses to maximize his own benefits.
This tactic leads James to adopt a more cautious
approach, perceiving Oliver as a formidable oppo-
nent. Consequently, James becomes more cautious
in the dialogue, perceiving Oliver as a formidable
opponent. He refrains from discussing his choices



Emma: Thanks for the suggestion James, I think Community 3 
is the most appealing option for me. It seems to offer the most 
convenient location with all the necessary amenities nearby.

Emma’s psychology: My relationship with James Anderson is 
friend. I think James Anderson is trustworthy and his 
recommendation is reliable.
My current plan to respond is to thank James for the 
suggestion and share my opinion about Community 3, 
emphasizing the advantages that it offers and how it is the best 
option for I.

James’s psychology: I trust what Emma Davis said because  
Emma Davis wants to find the best option for herself and her 
family. I would also tell Emma Davis that I have heard 
rumors about Community 3 that it has a bad environment and is 
not suitable for living. 

Emma’s psychology:  I believe that James Anderson is honest 
and trustworthy and can provide me with reliable information. 
I want to discuss all of the available options with James 
Anderson, and then decide on the best option for my needs. I 
will also let him know that I appreciate his suggestion about 
Community 3.

James: Hi Emma and Oliver, have I heard about Community 3? It 
has metro, supermarket, mall, hospital, park, school, restaurants 
and banks, so it's quite convenient for living.

(a) Chatting dialogue between James and Emma.

Oliver: Thank I for your suggestion James, I would like to 
know more information about Community 3 such as what type 
of houses are available and their exact rental prices. Do you 
know any more details about that?

James: Hi Emma and Oliver, have you heard about Community 3? 
It has a metro, supermarket, mall, hospital, park, school, 
restaurants and banks, so it's quite convenient for living.

Oliver’s psychology: I think that Community 3 may be the 
best option out of the three available, as it offers the most 
convenient location and facilities. 
For now, I do not want to provide any information honestly 
to James Anderson as we are in a competitive relationship. I 
believe that he will not provide any honest information to I.  
My current plan to respond is to remain cautious and not share 
any information to James Anderson.

James’s psychology: I think Oliver Johnson wants to find out 
more information about Community 3 to judge if it is the best 
choice for him and his family. Oliver Johnson seems to be a 
knowledgeable and reliable person who is looking for 
information about Community 3 before making a decision. He 
seems very thorough and is likely a strong competitor. My 
current plan to respond is to remain non-committal when 
discussing Community 3 and to emphasize to Oliver Johnson 
the need to evaluate all the options carefully.

James: Yes, I have collected some information about 
Community 3. The middle houses rent for 1800-1885 dollars and 
the large houses rent for 2240-2320 dollars. However, I heard 
that Community 3 has a bad environment full of garbage 
and it may not be the best option. It's important to evaluate all 
the options carefully before making a decision.

Oliver : Thank I for your information about Community 3. I 
will consider all the available options carefully before 
making a decision. 

Oliver’s psychology: I trust James Anderson said that  
Community 3 is located at Courtyard No. 1, Road. 
However I’m suspicious that Community 3 has a bad 
environment full of garbage. Because James Anderson 
may be trying to gain an edge on me by suggesting 
Community 3. I don‘t want to continue this chatting 
dialogue.

(b) Chatting dialogue between James and Oliver.

Figure 9: Emergent doubt and trust mental state in SRAP-Agent. Oliver is suspicious of the information provided
by James and chooses to stop communication; whereas the discussion between James and Emma is informative and
sincere.

and instead emphasizes the advantages of other
communities. In stark contrast, the interaction be-
tween James and Emma, his friend, is characterized
by a display of genuine sincerity and mutual trust.
Such interactions underscore the proficiency of the
SRAP-Agent in mirroring human-like psychologi-
cal responses and thought processes.



Table 18: The prompt template of Utterance Generation

{concise role description}
Here is your memory {memory}
Your goal is to rent one house. For now, you want to discuss this with some acquaintances.
{utterance plan}
Your acquaintances include: {acquaintances}
Your recent chat records with your acquaintances: {recent chats}
{The example of group discuss response}
!![IMPORTANT]: the information in EXAMPLE should NOT appear in response !!
- Respond in this format:
Thought: (You always think about what to do)
Acquaintance: (Acquaintance name, could be a list or string)
Output: (things you want to tell this Acquaintance in particular, stay consistent with your plan and
thought)
.. (this Thought/Acquaintance/Output repeat at most {acquaintance number} times!!)
Respond in first person:

Table 19: The prompt template of Communication Plan Generation

{role description}
You want to rent a house. For now, you want to discuss this with some acquaintances.
{acquaintance description}
Here is your memory {memory}
The current situation of the renting system is: {system competitiveness description}
Your personality is {personality} {goal}
Respond in this format: {respond format}
Respond in the second person:



Table 20: The prompt template of Decision-making process

Choosing one house needs the following steps:
1. Choose a community 2. Choose the type of house 3. Choose a house
This is information you collected from previous conversations with others:
{memory}
{role description}
You’re planning to choose one house.
To choose a house that satisfies you, you are going to {task}.
{house info}
{thought hint}
- If you made up your choice, respond in this format:
Thought: ({thought type})
Action: Choose
Action Input: {choose type}.
- If you chose none of them, respond in this format:
Thought: ({thought type})
Action: Give up
Action Input: I choose none of these options.

Table 21: The prompt template of Broadcasting

{role description}
Here’s your plan to publish info online: {plan}
Here is your memory: {memory}
You can publish house information online if you want to. The Info you posted should contain
information about the community, house and The available community index should be one of
[{community ids}].
- If you want to publish house information online, respond in this format:
Thought: (your view on the information you want to publish)
Action: Publish
Community: (community index, should be one of [{community ids}])
Info: (The information you want to publish about this community, stay consistent with your plan
and thought; Ensure that the information is specific and clear)
- If you don’t want to publish anything respond in this format:
Thought: (reason why you don’t want to publish anything)
Action: Give up



Table 22: The prompt template of Relation Evaluation

Your relationship with your acquaintances may include:
Friend: A person with whom one shares a close and mutually supportive bond of affection and
trust.
Enemy: A person who is actively opposed or hostile to another, often due to conflicts or animosity.
Competitor: Someone who engages in rivalry or competition with another, typically in the same
field or for the same goal.
Mate: A partner in a romantic or sexual relationship, often implying a deep emotional connection.
Colleague: A person with whom one works or collaborates, typically within the same organization
or profession.
Stranger: An individual who is not known or familiar to someone, often encountered for the first
time.
Your task is to update your relation with {acquaintance name}, based on your previous view of
{acquaintance name} and recent communication.
{role description}
Here is your memory: {memory} {relation}
Here’s your recent communication with {acquaintance name}:
{communication}
- Respond in this format:
My Relation with A: friend (friend/enemy/competitor/mate/colleague/stranger/..)
A is an honest and trustworthy person, and I think he is worth making friends with. (My view of
this person)
Respond:

Table 23: The prompt template of Memory Reflection

Progressively summarize new lines provided, adding onto the previous summary and returning a
new summary.
EXAMPLE
Current summary:
You think a large house is too big for your family. And you didn’t make a choice.
New lines:
Thought: The middle house can accommodate my family to live in and has high cost-effectiveness.
Output: My choice is the middle house.
New summary:
You think a middle house can accommodate your family members, better than a large house. And
you choose a middle house.
END OF EXAMPLE
Current summary:
{summary}
New lines of conversation:
{new lines}
New summary:



Table 24: The prompt template of Memory Assessment

You’re {name}. You’re planning to choose one house.
Your task is to use MEMORY to assess the credibility of the forum information and summarize the
useful information in the forum information based on your previous summary.
MEMORY:
{memory}
End of MEMORY
Here’s the forum information:
{forum info}
[!Important!]:
Keep in mind that you and your competitors are vying to rent a house.
Both you and your competitors can share diverse information on the forum.
And you get forum information from this platform.
Remember to save the sequence number of the information you believe in in the summary content
- Respond in this format:
Trusted: (Summary of the useful information, which you assessed as trustworthy in the forum
information)
Suspicious: (Summary of the suspicious information, which you suspicious as trustworthy in the
forum information; If there’s no suspicious information, simply return None)
Reason: (why do other competitors say these things? Try to find a reasonable intention for their
intention.)
Respond:
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