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In a multi-party machine learning system, different parties cooperate on optimizing towards better 
models by sharing data in a privacy-preserving way. A major challenge in learning is the incentive 
issue. For example, if there is competition among the parties, one may strategically hide their data 
to prevent other parties from getting better models.

In this paper, we study the problem through the lens of mechanism design and incorporate the 
features of multi-party learning in our setting. First, each agent’s valuation has externalities that 
depend on others’ types and actions. Second, each agent can only misreport a type lower than 
his true type, but not the other way round. We provide the optimal truthful mechanism in the 
separable utility setting, as well as necessary and sufficient conditions for truthful mechanisms in 
general cases. Finally, we propose an algorithm to find the desirable mechanism that is truthful, 
individually rational, efficient and weakly budget-balanced, and analyze the computational 
complexity of the algorithm.

1. Introduction

In multi-party machine learning, a group of parties cooperates on optimizing towards better models. This concept has attracted 
much attention recently [1–3]. The advantage of this approach is that, it can make use of the distributed datasets and computational 
power to learn a powerful model that anyone in the group cannot achieve alone.

To make multi-party machine learning practical, a large body of studies focuses on preserving data privacy in the learning 
process [4,5,2]. However, the incentive issues in the multi-party learning have largely been ignored in most previous studies, which 
results in a significant reduction in the effectiveness when putting their techniques into practice. Previous work usually let all the 
parties share the same global model with the best quality regardless of their contributions. This allocation works well when there 
are no conflicts of interest among the parties. For example, an app developer wants to use the users’ usage data to improve the user 
experience. All users are happy to contribute data since they can all benefit from such improvements [6].
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When the parties are competing with one another, they may be unwilling to participate in the learning process since their 
competitors can also benefit from their contributions. Consider the case where companies from the same industry are trying to adopt 
federated learning to level up the industry’s service qualities. Improving other companies’ services can possibly harm one’s own 
market share, especially when there are several monopolists that own most of the data.

Such a cooperative and competitive relation poses an interesting challenge that prevents the multi-party learning approach from 
being applied to a wider range of environments. In this paper, we view this problem from the multi-agent system perspective, and 
address the incentive issues mentioned above with the mechanism design theory.

Another key feature of our setting is that each agent cannot “make up” a dataset that is of a higher quality than their actual 
one. Thus the reported type of an agent is capped by their true type. The setting that agents can never over-report is common in 
practice. One straightforward example is sports competitions where athletes can show lower performance than their actual abilities 
but usually cannot over-perform. The restriction on the action space poses more constraints on agents’ behaviors, and thus allows 
more flexibility in the design space.

We first formulate the problem mathematically, and then apply techniques from the mechanism design theory to analyze it. Our 
model is more general than the standard mechanism design framework, and is also able to describe other similar problems involving 
both cooperation and competition.

We make the following contributions in this paper:

• We model and formulate the mechanism design problem in multi-party machine learning, and identify the differences between 
our setting and the other mechanism design settings.

• For the case with separable utility functions, we provide the revenue-optimal and truthful mechanism. For the case with general 
valuation functions, we provide both necessary and the sufficient conditions for all truthful and individually rational mecha-

nisms.

• We design an algorithm to find the mechanisms that guarantee individual rationality, truthfulness, efficiency and weak budget 
balance simultaneously when the valuation functions are given.

1.1. Related work

In our setting, agents have restricted action spaces, i.e., they can never report types exceeding their actual types. There is a series 
of works that focus on mechanism design with a restricted action space [7,8]. The discrete-bid ascending auctions [9,10,8] specify 
that all bidders’ action spaces are the same bid level set. Previous works focus on mechanisms with independent values and discrete 
restricted action spaces, while we study the interdependent values and continuous restricted action spaces setting.

In multi-party machine learning, the learned model can be copied and distributed to as many agents as possible, so the supply is 
unlimited. A related literature focuses on designing mechanisms in unlimited supply settings such as selling digital goods [11–13]. 
However, the seller sells the same item to buyers while in our setting we can allocate models with different qualities to different 
agents.

Redko and Laclau [14] study the optimal strategies of agents for collaborative machine learning problems. Both their work and 
ours capture the cooperation and competition among the agents, but they only consider the case where agents reveal their total 
datasets to participate while agents can choose to contribute only a fraction in our setting. Kang et al. [15] study the incentive design 
problem for federated learning, but all their results are about a non-competitive environment, which may not hold in real-world 
applications.

Our work contributes to the growing body of literature on incentive mechanism design for federated learning [16,17]. Jia 
et al. [18], Song et al. [19] design mechanisms based on the Shapley value and Ding et al. [20] apply the contract theory. However, 
these existing works do not consider the interdependent values of the participants and type-dependent action space as in our model.

Our setting is also related to the so-called interdependent value setting [21–23] in the mechanism design literature. With the 
competition among the agents in our setting, the utilities of them depend on the final model they obtain from the platform, which, 
in turn, depend on their reported types. However, a key difference between our setting and the standard interdependent value setting 
is that, in the standard interdependent value setting, an agent’s type affects other agents’ values regardless of what they report.

2. Preliminaries

In this section, we introduce the general concepts of mechanism design and formulate the multi-party machine learning as a 
mechanism design problem. A multi-party learning consists of a central platform and several parties (called agents hereafter). The 
agents serve their customers with their models trained by the platform using a multi-party learning framework. Each agent can 
choose whether to participate in the framework, and if an agent does not participate, then they train their model with only their own 
data. The platform requires all the participating agents to contribute their data in a privacy-preserving way and trains a model for 
each participant using a (weighted) combination of all the contributions. Then the platform returns the trained models to the agents.

An important problem in this process is the incentive issue. For example, if the participants have conflicts of interest, then they 
may only want to make use of others’ contributions but are not willing to contribute with all their own data. To align their incentives, 
we allow the platform to charge the participants according to some predefined rules.

In this paper, we analyze this problem from the angle of mechanism design, and aim to design allocation and payment rules that 
2

encourage all agents to join the multi-party learning as well as to contribute all their data.
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2.1. Valid data size (type)

Denote by 𝑁 = {1, 2, … , 𝑛} the set of 𝑛 agents. Each agent has a private dataset and all their datasets are disjoint. In machine 
learning, a model’s performance usually depends crucially on the size of the dataset used to train it. For ease of presentation, we 
assume that a model is fully characterized by its quality 𝑄 (e.g., the prediction accuracy), which only depends on the amount of data 
used to train it. We normalize the model quality 𝑄 such that 𝑄 ∈ [0, 1], where 𝑄 = 0 represents a random guessing model and 𝑄 = 1
represents a perfect model. Let 𝑠 be the size of a dataset and 𝑄(𝑠) be the quality of the resulting model. We have:

𝑄(0) = 0 and 𝑄(𝑠) < 1,∀𝑠.

In a multi-party machine learning process, it is possible that an agent only contributes part of their dataset, or even strategically 
add noisy or fake data to maximize their own utility. In this case, the model quality may not depend on the size of the dataset. To 
tackle this problem, we measure the contribution of a dataset to the corresponding model by its valid data size, and assume that the 
model quality increases with respect to the valid data size.

Assumption 1. The model quality 𝑄 is bounded and monotone increasing with respect to the valid data size 𝑠 ≥ 0 of the training data:

𝑄(𝑠′) >𝑄(𝑠),∀𝑠′ > 𝑠.

Let 𝑡𝑖 ∈ ℝ+ be the valid data size of agent 𝑖’s private dataset. We call 𝑡𝑖 the agent’s type. Clearly, by using only a subset of the 
private dataset or adding fake data, an agent can only lower their data quality, and thus decreases the contribution to the trained 
model. As a result, we assume that each agent cannot contribute to the platform with a dataset higher than their true type:

Assumption 2. Each agent 𝑖 can only report a type lower than his true type 𝑡𝑖, i.e., the action space of agent 𝑖 is [0, 𝑡𝑖].

2.2. Learning protocol

In this section, we describe the learning protocol that could enable the implementation of our mechanism.

In mechanism design theory, it is crucial for the mechanism to obtain information about the types of the participating agents, as 
such information would ultimately affect the final outcome of the mechanism. In standard mechanism design settings, mechanism 
designers can usually require the participating agents to report their types directly to the mechanism. However, in the multi-party 
learning process, the model is trained in a privacy-preserving way and the agents do not reveal their datasets to the platform. In 
order for the platform to know the agents’ valid data size 𝑡𝑖 , we further assume that the platform has a validation dataset, which can 
be used to compute the quality of any model.

With such a validation dataset, a naïve idea is to ask all the agents to submit the best model that they can possibly obtain by 
using their own dataset in the beginning. Then the platform computes the model quality 𝑞𝑖 using the validation dataset and gets the

agent’s valid data size 𝑡𝑖 by 𝑡𝑖 =𝑄−1(𝑞𝑖). The agent type 𝑡𝑖 can be used by the platform in the later training process.

However, this naïve idea can be problematic, since it is possible that an agent reports 𝑡𝑖 in the beginning but only contributes

𝑡′
𝑖
< 𝑡𝑖 in the actual training process. In the extreme case where all agents contribute nothing to the training process, the platform 

will fail to train a useful model. To address this issue, the platform can train 𝑛 additional models simultaneously, with the 𝑖-th 
model trained only using the data from agent 𝑖. During the training process, the platform can apply secure multi-party computation 
techniques, such as homomorphic encryption [5,24], to prevent the agent from knowing which model is sent to him to compute the 
update. And after the training, the platform can compute the quality 𝑡′

𝑖
of the 𝑖-th model again using the validation dataset. If the 

qualities 𝑡′
𝑖

and 𝑡𝑖 match, we know with high probability that the dataset contributed by the agent is consistent with the type he 
reports. Otherwise, the platform can just exclude the agent and start over the training process again.

The above protocol only ensures that the type reported by each agent is the same as the type he uses in the actual training process 
with. To encourage all agents to join and contribute all their data, we still need to design mechanisms with desirable properties, to 
which we devote the rest of the paper.

2.3. Mechanism

Let 𝑡 = (𝑡1, 𝑡2, … , 𝑡𝑛) and 𝑡−𝑖 = (𝑡1, … , 𝑡𝑖−1, 𝑡𝑖+1, … , 𝑡𝑛) be the type profile of all agents and all agents without 𝑖, respectively. Given 
the reported types of agents, a mechanism specifies a numerical allocation and payment for each agent, where the allocation is a 
model of certain quality trained in the multi-party learning process. Formally, we have:

Definition 1 (Mechanism). A mechanism  = (𝑥, 𝑝) is a tuple, where

• 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛), where 𝑥𝑖: ℝ𝑛
+ ↦ℝ is the allocation function for agent 𝑖, which takes the agents’ reported types as input and 

decides the model quality for agent 𝑖 as output;

• 𝑝 = (𝑝1, 𝑝2, ⋯ , 𝑝𝑛), where 𝑝𝑖: ℝ𝑛
+ ↦ ℝ is the payment function for agent 𝑖, which takes the agents’ reported types as input and 
3

specifies how much agent 𝑖 should pay to the mechanism.
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Let 𝑡′ denote the reported type profile of all agents. Here, the allocation function has a natural upper bound: 𝑥𝑖(𝑡′) ≤ 𝑄(
∑

𝑖 𝑡
′
𝑖
), 

i.e., the best model the platform can allocate is the one trained with all the data submitted by the agent. Therefore, any feasible 
allocation must satisfy 𝑥𝑖 ∈ [0, 𝑄(

∑
𝑖 𝑡
′
𝑖
)]. In a competitive environment, a strategic agent may not use the model they receive from 

the platform but train a private model with their own data instead. Thus the final model quality depends on both the allocation and 
the actual type of an agent. We use valuation function 𝑣𝑖(𝑥(𝑡′), 𝑡) to measure the profit of agent 𝑖.

Definition 2 (Valuation). We consider valuation functions 𝑣𝑖(𝑥(𝑡′), 𝑡) that depend not only on the allocation outcome 𝑥(𝑡′) where 𝑡′
is the reported type profile, but also on the actual type profile 𝑡.

We assume the model agent 𝑖 uses to serve their customers is:

𝑞𝑖 =max{𝑥𝑖(𝑡′),𝑄(𝑡𝑖)},

where 𝑄(𝑡𝑖) is the model trained with his own data. The valuation of agent 𝑖 depends on the final model qualities of all agents due 
to their competition. Hence 𝑣𝑖 can also be expressed as 𝑣𝑖(𝑞1, … , 𝑞𝑛).

We make the following assumption on agent 𝑖’s valuation:

Assumption 3. Agent 𝑖’s valuation is monotone increasing with respect to true type 𝑡𝑖 when the outcome 𝑥 is fixed.

𝑣𝑖(𝑥, 𝑡𝑖, 𝑡−𝑖) ≥ 𝑣𝑖(𝑥, 𝑡𝑖, 𝑡−𝑖),∀𝑥,∀𝑡𝑖 ≥ 𝑡𝑖,∀𝑡−𝑖,∀𝑖.

This is because possessing more valid data will not lower one’s valuation. Otherwise, an agent is always able to discard part of 
his dataset to make his true type 𝑡′

𝑖
. Suppose that each agent 𝑖’s utility 𝑢𝑖(𝑡, 𝑡′) has the form:

𝑢𝑖(𝑡, 𝑡′) = 𝑣𝑖(𝑥(𝑡′), 𝑡) − 𝑝𝑖(𝑡′),

where 𝑡 and 𝑡′ are true types and reported types of all agents respectively. As we mentioned above, an agent may lie about his type 
in order to benefit from the mechanism. The mechanism should incentivize truthful reports to keep agents from lying.

Definition 3 (Ex-post Incentive Compatibility (ex-post IC)). A mechanism is said to be ex-post incentive compatible, or ex-post truthful, 
if reporting truthfully is always the best response for each agent when the other agents report truthfully:

𝑢𝑖(𝑥(𝑡𝑖, 𝑡−𝑖), 𝑡) ≥ 𝑢𝑖(𝑥𝑖(𝑡′𝑖 , 𝑡−𝑖), 𝑡),∀𝑡𝑖 ≥ 𝑡′
𝑖
,∀𝑡−𝑖,∀𝑖.

For ease of presentation, we say agent 𝑖 reports ∅ if he chooses not to participate (so we have 𝑥𝑖(∅, 𝑡−𝑖) = 0 and 𝑝𝑖(∅, 𝑡−𝑖) = 0). Note 
that not participating is different from participating but reporting nothing (𝑡′

𝑖
= 0). A non-participating agent can only use the model 

trained with his own data, while a non-contributing participant can still possibly get from the platform a model that is better than 
his own model. Therefore, with such a distinction, an agent with no data can still buy data (through the model from the platform) 
from other agents.

To encourage the agents to participate in the mechanism, the following property should be satisfied:

Definition 4 (Individual Rationality (IR)). A mechanism is said to be individually rational, if no agent loses by truthful participation 
when the other agents report truthfully:

𝑢𝑖(𝑥(𝑡𝑖, 𝑡−𝑖), 𝑡) ≥ 𝑢𝑖(𝑥(∅, 𝑡−𝑖), 𝑡),∀𝑡𝑖, 𝑡−𝑖,∀𝑖.

The revenue and welfare of a mechanism are defined to be all the payments collected from the agents and all the valuations of 
the agents.

Definition 5. The revenue and welfare of a mechanism (𝑥, 𝑝) are:

REV(𝑥, 𝑝) =
𝑛∑
𝑖=1

𝑝𝑖(𝑡′),

WEL(𝑥, 𝑝) =
𝑛∑
𝑖=1

𝑣𝑖(𝑥, 𝑡).

We say that a mechanism is efficient if

(𝑥, 𝑝) = argmax
(𝑥,𝑝)

WEL(𝑥, 𝑝).
4

A mechanism is weakly budget-balanced if it never loses money.
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Definition 6 (Weak Budget Balance). A mechanism is weakly budget-balanced if:

REV(𝑥, 𝑝) ≥ 0,∀𝑡.

Definition 7 (Desirable Mechanism). We say a mechanism is desirable if it is ex-post IC, IR, efficient and weakly budget-balanced.

A key characteristic of our setting is that each agent cannot submit a dataset that is of a higher quality than their true dataset. 
This means an agent with type 𝑡𝑖 cannot over-report type 𝑡′

𝑖
with 𝑡′

𝑖
> 𝑡𝑖, i.e., the action space of each agent is [0, 𝑡𝑖] and depends 

on their true type 𝑡𝑖. This is different from the standard mechanism design setting, where both over-reporting and under-report are 
allowed. Our setting puts a stronger restriction on agents’ behaviors, thus has a larger design space.

Another difference from the standard mechanism design setting is that, in our setting, the agents do not have the “exit choice” 
(not participating in the mechanism and getting 0 utility). This is due to the motivation of this paper: companies from the same 
industry are trying to improve their service quality, and they are always in the game regardless of their choices. A non-participating 
company may even have a negative utility because of loss of market share if all other companies improved their services.

3. Separable externality setting

In our setting, each agent’s utility may also depend on the models that other agents actually use. Such externalities lead to 
interesting and complicated interactions between the agents. For example, by contributing more data, one may improve the others’ 
model quality, and end up harming their own market share. In this section, we study the setting where agents have separable

externalities.

Definition 8 (Separable Valuation). Let 𝑞𝑖 be the final selected model quality of the agent and 𝑞−𝑖 be the profile of model qualities of 
all the agents except 𝑖. A valuation function is separable if it is in the form:

𝑣𝑖(𝑞𝑖, 𝑞−𝑖) = 𝐹𝑖(𝑞𝑖) + 𝜃𝑖(𝑞−𝑖),

where 𝐹𝑖 is monotone increasing and 𝜃𝑖 is an arbitrary function.

Example 1. Let’s consider a special separable valuation: the linear externality setting, where the valuation for each agent is defined 
as 𝑣𝑖 =

∑
𝑗 𝛼𝑖𝑗𝑞𝑗 with 𝑞𝑗 being the model that agent 𝑗 uses. The externality coefficient 𝛼𝑖𝑗 means the influence of agent 𝑗 to agent 

𝑖 and captures either the competitive or cooperative relations among agents. If the increase of agent 𝑗 ’s model quality imposes a 
negative (positive) effect on agent 𝑖’s utility (e.g. major opponents or collaborators in the market), 𝛼𝑖𝑗 would be negative (positive). 
Additionally, 𝛼𝑖𝑖 should always be positive, naturally.

In the linear externality setting, the efficient allocation is straightforward. For each agent 𝑖, we give 𝑖 the training model with the 
best possible quality if 

∑
𝑗 𝛼𝑗𝑖 ≥ 0. Otherwise, no model is given to agent 𝑖.

We introduce a payment function called maximal exploitation payment, and show that the mechanism with efficient allocation and 
the maximal exploitation payment guarantees IR, ex-post IC, efficiency and revenue optimum.

Definition 9 (Maximal Exploitation Payment (MEP)). For a given allocation function 𝑥, if the agent 𝑖 reports a type 𝑡′
𝑖

and the other 
agents report 𝑡′−𝑖, the maximal exploitation payment is to charge agent 𝑖

𝑝𝑖(𝑡′𝑖 , 𝑡
′
−𝑖) = 𝑣𝑖(𝑥(𝑡′𝑖 , 𝑡

′
−𝑖), 𝑡

′
𝑖
, 𝑡′−𝑖) − 𝑣𝑖(𝑥(∅, 𝑡′−𝑖), 𝑡

′
𝑖
, 𝑡′−𝑖).

We emphasize that our MEP mechanism and the VCG are quite different. The VCG charges each agent for the harm he causes to 
others due to his participation while the MEP charges each agent the profit he gets from the mechanism due to his participation. We 
will show that the MEP is truthful in the separable valuation setting in the following theorem, while it is already known that VCG 
cannot guarantee truthfulness in similar settings [25] (e.g., the interdependent setting).

Theorem 1. Under the separable valuation setting, given any allocation function 𝑥, the mechanism (𝑥, �̄�) where �̄� is the MEP is IR, ex-post 
IC, and has the maximal revenue among all mechanisms (𝑥, 𝑝) that are IR.

Proof. Intuitively, the MEP rule charges agent 𝑖 the profit he gets from an model that the mechanism allocates to him. If the 
mechanism charges higher than the MEP, an agent would have negative utility after taking part in. The IR constraint would then be 
violated. So it’s easy to see that the MEP is the maximal payment among all IR mechanisms.

Then we prove that this payment rule also guarantees the ex-post IC property. It suffices to show that if an agent hides some data, 
no matter which model he chooses to use, he would never get more utility than that of truthful reporting. Let 𝑡𝑖 and 𝑡′

𝑖
be the true 

and reported type of agent 𝑖.
Suppose that the agent 𝑖 truthfully reports his type, i.e., 𝑡′

𝑖
= 𝑡𝑖. Since the payment function is defined to charge this agent until 
5

he reaches the valuation when he does not take part in the mechanism, the utility of this honest agent would be
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𝑢0
𝑖
(𝑡′) = 𝑢0

𝑖
(𝑡𝑖, 𝑡′−𝑖) = 𝐹𝑖(𝑄(𝑡𝑖)) + 𝜃𝑖(𝑞−𝑖(∅, 𝑡′−𝑖)),

where the first equality is due to 𝑡′
𝑖
= 𝑡𝑖.

If the agent misreports his type, i.e., 𝑡′
𝑖
≤ 𝑡𝑖. According to the MEP, the payment function for agent 𝑖 would be

𝑝𝑖(𝑡′𝑖 , 𝑡
′
−𝑖) = 𝐹𝑖(𝑞𝑖(𝑡′𝑖 , 𝑡

′
−𝑖)) + 𝜃𝑖(𝑞−𝑖(𝑡′𝑖 , 𝑡

′
−𝑖)) − 𝐹𝑖(𝑄(𝑡′

𝑖
)) − 𝜃𝑖(𝑞−𝑖(∅, 𝑡′−𝑖)).

It can be seen that the mechanism would never give an agent a worse model than the model trained by its reported data, otherwise 
the agents would surely select their private data to train models. Hence it is without loss of generality to assume that the allocation 
𝑥𝑖(𝑡′𝑖 , 𝑡

′
−𝑖) ≥𝑄(𝑡′

𝑖
), ∀𝑡′

𝑖
, 𝑡′−𝑖, ∀𝑖. Thus we have 𝑞−𝑖(𝑡′𝑖 , 𝑡

′
−𝑖) = 𝑥−𝑖(𝑡′𝑖 , 𝑡

′
−𝑖).

We consider the following two cases.

Case 1: the agent chooses the allocation 𝑥𝑖. Since agent 𝑖 selects the allocated model, we have 𝑞𝑖 = 𝑥𝑖(𝑡′𝑖 , 𝑡
′
−𝑖). Then the utility 

of agent 𝑖 would be

𝑢1
𝑖
=𝑣𝑖(𝑡′𝑖 , 𝑡

′
−𝑖) − 𝑝𝑖(𝑡′𝑖 , 𝑡

′
−𝑖)

=𝐹𝑖(𝑥𝑖(𝑡′𝑖 , 𝑡
′
−𝑖)) + 𝜃𝑖(𝑥−𝑖(𝑡′𝑖 , 𝑡

′
−𝑖)) + 𝐹𝑖(𝑄(𝑡′

𝑖
))

+ 𝜃𝑖(𝑥−𝑖(∅, 𝑡′−𝑖)) − 𝐹𝑖(𝑥𝑖(𝑡′𝑖 , 𝑡
′
−𝑖)) − 𝜃𝑖(𝑥−𝑖(𝑡′𝑖 , 𝑡

′
−𝑖))

=𝐹𝑖(𝑄(𝑡′
𝑖
)) + 𝜃𝑖(𝑥−𝑖(∅, 𝑡′−𝑖)).

Because both 𝐹𝑖 and 𝑄 are monotone increasing functions and 𝑡𝑖 ≥ 𝑡′
𝑖
, we have

𝑢1
𝑖
≤ 𝐹𝑖(𝑄(𝑡𝑖)) + 𝜃𝑖(𝑥−𝑖(∅, 𝑡′−𝑖)) = 𝑢0

𝑖
.

Case 2: the agent chooses 𝑄(𝑡𝑖). Since agent 𝑖 selects the model trained by his private data, we have 𝑞𝑖 =𝑄(𝑡𝑖). The final utility 
of agent 𝑖 would be

𝑢2
𝑖
=𝑣𝑖(𝑡′𝑖 , 𝑡

′
−𝑖) − 𝑝𝑖(𝑡′𝑖 , 𝑡

′
−𝑖)

=𝐹𝑖(𝑄(𝑡𝑖)) + 𝜃𝑖(𝑥−𝑖(𝑡′𝑖 , 𝑡
′
−𝑖)) + 𝐹𝑖(𝑄(𝑡′

𝑖
))

+ 𝜃𝑖(𝑥−𝑖(∅, 𝑡′−𝑖)) − 𝐹𝑖(𝑥𝑖(𝑡′𝑖 , 𝑡
′
−𝑖)) − 𝜃𝑖(𝑥−𝑖(𝑡′𝑖 , 𝑡

′
−𝑖))

=𝐹𝑖(𝑄(𝑡𝑖)) + 𝐹𝑖(𝑄(𝑡′
𝑖
)) + 𝜃𝑖(𝑥−𝑖(∅, 𝑡′−𝑖)) − 𝐹𝑖(𝑥𝑖(𝑡′𝑖 , 𝑡

′
−𝑖)).

Subtract the original utility from the both sides, then we have

𝑢2
𝑖
− 𝑢0

𝑖
=𝐹𝑖(𝑄(𝑡𝑖)) + 𝐹𝑖(𝑄(𝑡′

𝑖
)) + 𝜃𝑖(𝑥−𝑖(∅, 𝑡′−𝑖))

− 𝐹𝑖(𝑥𝑖(𝑡′𝑖 , 𝑡
′
−𝑖)) − 𝐹𝑖(𝑄(𝑡𝑖)) − 𝜃𝑖(𝑥−𝑖(∅, 𝑡′−𝑖))

=𝐹𝑖(𝑄(𝑡′
𝑖
)) − 𝐹𝑖(𝑥𝑖(𝑡′𝑖 , 𝑡

′
−𝑖)).

Because 𝑥𝑖(𝑡′𝑖 , 𝑡
′
−𝑖) ≥ 𝑄(𝑡′

𝑖
), ∀𝑡′

𝑖
, 𝑡′−𝑖, ∀𝑖 and because 𝐹𝑖 is a monotonically increasing function, we can get 𝑢2

𝑖
− 𝑢0

𝑖
≤ 0. Therefore 

max{𝑢1
𝑖
, 𝑢2

𝑖
} ≤ 𝑢0

𝑖
, lying would not bring more benefits to any agent, and the mechanism is ex-post IC. □

Corollary 1. Any efficient allocation mechanism with MEP under the linear externality setting with all the linear coefficients 𝛼𝑗𝑖 ≥ 0 should 
be IR, ex-post IC, weakly budget-balanced and efficient.

Proof. In Theorem 1 we know that the MEP mechanism is IR and ex-post IC. Since the linear coefficients are all positive and the 
externality setting is linear, any efficient mechanism would allocate the best model to all the agents. Since each agent gets a model 
with no less quality than his reported one and the payment is equal to the value difference between the case an agent truthfully 
report and the case he exits the mechanism. The agent’s value is always larger than the value when he exits the mechanism. Then 
the payment is always positive and the mechanism should satisfy all of the four properties. □

4. General externality setting

In this section, we consider the general externality setting where the valuations of agents can have any forms of externalities. 
The restrictions on the action space and the value functions make it difficult to characterize ex-post IC and IR mechanisms. It is 
possible that given an allocation rule, there exist more than one mechanism with different payments that satisfy both ex-post IC 
and IR constraints. To understand what makes a mechanism ex-post IC and IR, we analyze some properties of truthful mechanisms 
in this section. For ease of presentation, we assume that the functions 𝑣(⋅), 𝑥(⋅) and 𝑝(⋅) are differentiable. However, even when 
the assumption does hold, our results still apply. In this case, the derivatives and partial derivative of non-differentiable or even 
discontinuous functions are called general functions or distributions (e.g., the Dirac delta function). In this paper, we do not discuss 
6

this in detail, but refer interested readers to [26, Chapter 6].
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Theorem 2 (Necessary Condition). If a mechanism (𝑥, 𝑝) is both IR and ex-post IC, for all possible valuation functions satisfying Assump-

tion 3, then the payment function satisfies ∀𝑡𝑖 ≥ 𝑡′
𝑖
, ∀𝑡𝑖, ∀𝑡−𝑖, ∀𝑖,

𝑝𝑖(0, 𝑡−𝑖) ≤ 𝑣𝑖(𝑥(0, 𝑡−𝑖),0, 𝑡−𝑖) − 𝑣𝑖(𝑥(∅, 𝑡−𝑖),0, 𝑡−𝑖), (1)

𝑝𝑖(𝑡𝑖, 𝑡−𝑖) − 𝑝𝑖(𝑡′𝑖 , 𝑡−𝑖) ≤
𝑡𝑖

∫
𝑡′
𝑖

𝜕𝑣𝑖(𝑥(𝑠′, 𝑡−𝑖), 𝑠, 𝑡−𝑖)
𝜕𝑠′

|||||𝑠=𝑠′ d𝑠
′, (2)

where we view 𝑣𝑖(𝑥(𝑡′𝑖 , 𝑡−𝑖), 𝑡𝑖, 𝑡−𝑖) as a function of 𝑡𝑖, 𝑡′𝑖 and 𝑡−𝑖 for simplicity.

Proof. We first prove that Equation (1) holds. To guarantee the IR property, we need to ensure that for any 𝑡𝑖 and 𝑡−𝑖, the following 
holds:

𝑢𝑖(𝑥(𝑡𝑖, 𝑡−𝑖), 𝑡) ≥ 𝑢𝑖(𝑥(∅, 𝑡−𝑖), 𝑡).

In particular, when 𝑡𝑖 = 0, we have:

𝑢𝑖(𝑥(0, 𝑡−𝑖),0, 𝑡−𝑖) ≥ 𝑢𝑖(𝑥(∅, 𝑡−𝑖),0, 𝑡−𝑖),

or equivalently,

𝑣𝑖(𝑥(0, 𝑡−𝑖),0, 𝑡−𝑖) − 𝑝𝑖(0, 𝑡−𝑖) ≥ 𝑣𝑖(𝑥(∅, 𝑡−𝑖),0, 𝑡−𝑖) − 0,

which directly implies Equation (1).

To show Equation (2) must hold, we observe that

𝑢𝑖(𝑥(𝑡𝑖, 𝑡′−𝑖), 𝑡𝑖, 𝑡−𝑖) − 𝑢𝑖(𝑥(𝑡′𝑖 , 𝑡
′
−𝑖), 𝑡

′
𝑖
, 𝑡−𝑖)

=[𝑣𝑖(𝑥(𝑡𝑖, 𝑡′−𝑖), 𝑡𝑖, 𝑡−𝑖) − 𝑝𝑖(𝑡𝑖, 𝑡′−𝑖)] − [𝑣𝑖(𝑥(𝑡′𝑖 , 𝑡
′
−𝑖), 𝑡

′
𝑖
, 𝑡−𝑖) − 𝑝𝑖(𝑡′𝑖 , 𝑡

′
−𝑖)]

≥[𝑣𝑖(𝑥(𝑡𝑖, 𝑡′−𝑖), 𝑡𝑖, 𝑡−𝑖) − 𝑝𝑖(𝑡𝑖, 𝑡′−𝑖)] − [𝑣𝑖(𝑥(𝑡′𝑖 , 𝑡
′
−𝑖), 𝑡𝑖, 𝑡−𝑖) − 𝑝𝑖(𝑡′𝑖 , 𝑡

′
−𝑖)]

=𝑢𝑖(𝑥(𝑡𝑖, 𝑡′−𝑖), 𝑡𝑖, 𝑡−𝑖) − 𝑢𝑖(𝑥(𝑡′𝑖 , 𝑡
′
−𝑖), 𝑡𝑖, 𝑡−𝑖)

≥0, (3)

where the first inequality is due to Assumption 3, and the last inequality is because of the ex-post IC property.

Rewriting Equation (3), we have:

𝑝𝑖(𝑡𝑖, 𝑡′−𝑖) − 𝑝𝑖(𝑡′𝑖 , 𝑡
′
−𝑖) ≤ 𝑣𝑖(𝑥(𝑡𝑖, 𝑡′−𝑖), 𝑡𝑖, 𝑡−𝑖) − 𝑣𝑖(𝑥(𝑡′𝑖 , 𝑡

′
−𝑖), 𝑡

′
𝑖
, 𝑡−𝑖)

=

𝑡𝑖

∫
𝑡′
𝑖

d𝑣𝑖(𝑥(𝑠′, 𝑡′−𝑖), 𝑠(𝑠
′), 𝑡−𝑖)

d𝑠′
d𝑠′. (4)

Fixing 𝑡−𝑖 and 𝑡′−𝑖, the total derivative of 𝑣𝑖(𝑥(𝑠′, 𝑡′−𝑖), 𝑠, 𝑡−𝑖) is:

d𝑣𝑖(𝑥(𝑠′, 𝑡′−𝑖), 𝑠, 𝑡−𝑖)

=
𝜕𝑣𝑖(𝑥(𝑠′, 𝑡′−𝑖), 𝑠, 𝑡−𝑖)

𝜕𝑠′
d𝑠′ +

𝜕𝑣𝑖(𝑥(𝑠′, 𝑡′−𝑖), 𝑠, 𝑡−𝑖)
𝜕𝑠

d𝑠.

View 𝑠 as a function of 𝑠′ and let 𝑠(𝑠′) = 𝑠′:

d𝑣𝑖(𝑥(𝑠′, 𝑡′−𝑖), 𝑠(𝑠
′), 𝑡−𝑖)

d𝑠′

=
𝜕𝑣𝑖(𝑥(𝑠′, 𝑡′−𝑖), 𝑠, 𝑡−𝑖)

𝜕𝑠′

|||||𝑠=𝑠′ +
𝜕𝑣𝑖(𝑥(𝑠′, 𝑡′−𝑖), 𝑠(𝑠

′), 𝑡−𝑖)
𝜕𝑠(𝑠′)

d𝑠(𝑠′)
d𝑠′

.

Plug into Equation (4), and we obtain:

𝑝𝑖(𝑡𝑖, 𝑡′−𝑖) − 𝑝𝑖(𝑡′𝑖 , 𝑡
′
−𝑖)

≤
𝑡𝑖

∫
𝑡′
𝑖

𝜕𝑣𝑖(𝑥(𝑠′, 𝑡′−𝑖), 𝑠, 𝑡−𝑖)
𝜕𝑠′

|||||𝑠=𝑠′ +
𝑡𝑖

∫
𝑡′
𝑖

𝜕𝑣𝑖(𝑥(𝑠′, 𝑡′−𝑖), 𝑠(𝑠
′), 𝑡−𝑖)

𝜕𝑠(𝑠′)
d𝑠′.
7

Since the above inequality holds for any valuation function with 𝑣𝑖(𝑥, 𝑡𝑖, 𝑡−𝑖) ≥ 𝑣𝑖(𝑥, 𝑡′𝑖 , 𝑡−𝑖), ∀𝑥, ∀𝑡−𝑖, ∀𝑡𝑖 ≥ 𝑡′
𝑖
, we have:
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𝑝𝑖(𝑡𝑖, 𝑡′−𝑖) − 𝑝𝑖(𝑡′𝑖 , 𝑡
′
−𝑖) ≤

𝑡𝑖

∫
𝑡′
𝑖

𝜕𝑣𝑖(𝑥(𝑠′, 𝑡′−𝑖), 𝑠, 𝑡−𝑖)
𝜕𝑠′

|||||𝑠=𝑠′ d𝑠
′. □

Theorem 2 describes what the payment 𝑝 is like in all ex-post IC and IR mechanisms. In fact, the conditions in Theorem 2 are also 
crucial in making a mechanism truthful. However, to ensure ex-post IC and IR, we still need to impose restrictions on the allocation 
rule.

Theorem 3 (Sufficient Condition). Given any valuation function satisfying Assumption 3, a mechanism (𝑥, 𝑝) satisfies both IR and ex-post 
IC, if for each agent 𝑖, for all 𝑡𝑖 ≥ 𝑡′

𝑖
, and all 𝑡−𝑖, Equations (1) and the following two hold

𝑡′
𝑖
∈argmin

𝑡𝑖∶𝑡𝑖≥𝑡′𝑖

𝜕𝑣𝑖(𝑥(𝑡′𝑖 , 𝑡−𝑖), 𝑡𝑖, 𝑡−𝑖)
𝜕𝑡′

𝑖

(5)

𝑝𝑖(𝑡𝑖, 𝑡−𝑖) − 𝑝𝑖(𝑡′𝑖 , 𝑡−𝑖)

≤
𝑡𝑖

∫
𝑡′
𝑖

𝜕𝑣𝑖(𝑥(𝑠′, 𝑡−𝑖), 𝑠, 𝑡−𝑖)
𝜕𝑠′

|||||𝑠=𝑠′ d𝑠
′ −

𝑡𝑖

∫
𝑡′
𝑖

𝜕𝑣𝑖(𝑥(∅, 𝑡−𝑖), 𝑠, 𝑡−𝑖)
𝜕𝑠

d𝑠. (6)

Proof. Equation (5) indicates that the function 𝜕𝑣𝑖(𝑥(𝑡
′
𝑖
,𝑡′−𝑖),𝑡𝑖 ,𝑡−𝑖)
𝜕𝑡′
𝑖

is minimized at 𝑡′
𝑖
:

𝜕𝑣𝑖(𝑥(𝑡′𝑖 , 𝑡
′
−𝑖), 𝑠, 𝑡−𝑖)

𝜕𝑡′
𝑖

|||||𝑠=𝑡′
𝑖

≤ 𝜕𝑣𝑖(𝑥(𝑡′𝑖 , 𝑡
′
−𝑖), 𝑡𝑖, 𝑡−𝑖)

𝜕𝑡′
𝑖

. (7)

Therefore, we have

𝑢𝑖(𝑥(𝑡𝑖, 𝑡′−𝑖), 𝑡𝑖, 𝑡−𝑖) − 𝑢𝑖(𝑥(𝑡′𝑖 , 𝑡
′
−𝑖), 𝑡𝑖, 𝑡−𝑖)

=

𝑡𝑖

∫
𝑡′
𝑖

𝜕𝑣𝑖(𝑥(𝑠′, 𝑡′−𝑖), 𝑡𝑖, 𝑡−𝑖)
𝜕𝑠′

d𝑠′ − 𝑝𝑖(𝑡𝑖, 𝑡′−𝑖) + 𝑝𝑖(𝑡′𝑖 , 𝑡
′
−𝑖)

≥
𝑡𝑖

∫
𝑡′
𝑖

𝜕𝑣𝑖(𝑥(𝑠′, 𝑡′−𝑖), 𝑠, 𝑡−𝑖)
𝜕𝑠′

|||||𝑠=𝑠′ d𝑠
′ − 𝑝𝑖(𝑡𝑖, 𝑡′−𝑖) + 𝑝𝑖(𝑡′𝑖 , 𝑡

′
−𝑖)

≥
𝑡𝑖

∫
𝑡′
𝑖

𝜕𝑣𝑖(𝑥(∅, 𝑡′−𝑖), 𝑠, 𝑡−𝑖)
𝜕𝑠

d𝑠, (8)

where the two inequalities are due to Equation (7) and (6), respectively. Since 𝑣𝑖(𝑥, 𝑡𝑖, 𝑡−𝑖)≥𝑣𝑖(𝑥, 𝑡′𝑖 , 𝑡−𝑖), ∀𝑥, ∀𝑡−𝑖, ∀𝑡𝑖 ≥ 𝑡′
𝑖

indicates 
𝜕𝑣𝑖(𝑥(∅,𝑡′−𝑖),𝑠,𝑡−𝑖)

𝜕𝑠
≥ 0, the above inequality shows that the mechanism guarantees the ex-post IC property.

To prove that the mechanism is IR, we first observe that

[𝑢𝑖(𝑥(𝑡𝑖, 𝑡′−𝑖), 𝑡𝑖, 𝑡−𝑖) − 𝑣𝑖(𝑥(∅, 𝑡′−𝑖), 𝑡𝑖, 𝑡−𝑖)] − [𝑢𝑖(𝑥(𝑡′𝑖 , 𝑡
′
−𝑖), 𝑡

′
𝑖
, 𝑡−𝑖)

− 𝑣𝑖(∅, 𝑥(𝑡−𝑖), 𝑡′𝑖 , 𝑡−𝑖)]

=𝑢𝑖(𝑥(𝑡𝑖, 𝑡′−𝑖), 𝑡𝑖, 𝑡−𝑖) − 𝑢𝑖(𝑥(𝑡′𝑖 , 𝑡
′
−𝑖), 𝑡

′
𝑖
, 𝑡−𝑖) −

𝑡𝑖

∫
𝑡′
𝑖

𝜕𝑣𝑖(𝑥(∅, 𝑡′−𝑖), 𝑠, 𝑡−𝑖)
𝜕𝑠

d𝑠

≥𝑢𝑖(𝑥(𝑡𝑖, 𝑡′−𝑖), 𝑡𝑖, 𝑡−𝑖) − 𝑢𝑖(𝑥(𝑡′𝑖 , 𝑡
′
−𝑖), 𝑡𝑖, 𝑡−𝑖) −

𝑡𝑖

∫
𝑡′
𝑖

𝜕𝑣𝑖(𝑥(∅, 𝑡′−𝑖), 𝑠, 𝑡−𝑖)
𝜕𝑠

d𝑠

≥0,
where the two inequalities are Assumption 3 and Equation (8). Letting 𝑡′

𝑖
= 0 using Equation (2), we get:
8

𝑢𝑖(𝑥(𝑡𝑖, 𝑡′−𝑖), 𝑡𝑖, 𝑡−𝑖) − 𝑣𝑖(𝑥(∅, 𝑡′−𝑖), 𝑡𝑖, 𝑡−𝑖)
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≥𝑢𝑖(𝑥(0, 𝑡′−𝑖),0, 𝑡−𝑖) − 𝑣𝑖(𝑥(∅, 𝑡′−𝑖),0, 𝑡−𝑖)

=𝑣𝑖(𝑥(0, 𝑡′−𝑖),0, 𝑡−𝑖) − 𝑝𝑖(0, 𝑡′−𝑖) − 𝑣𝑖(𝑥(∅, 𝑡′−𝑖),0, 𝑡−𝑖)

≥0. □

5. Algorithm for finding a desirable mechanism

In the linear externality setting, we provide a mechanism that satisfies all the desirable properties. But this mechanism is not 
applicable to all valuation functions in the general setting, since the existence of a desirable mechanism depends on the agents’ 
actual valuation functions. We provide an algorithm, that given the agents’ valuations, computes whether such a mechanism exists, 
and outputs the one that optimizes revenue, if any.

Since each agent can only under-report, according to the IR property, we must have:

𝑢𝑖(𝑥(𝑡𝑖, 𝑡−𝑖), 𝑡) ≥ 𝑢𝑖(𝑥(∅, 𝑡−𝑖), 𝑡),∀𝑡,∀𝑖.

Equivalently, we get ∀𝑡, ∀𝑖,

𝑢𝑖(𝑥(∅, 𝑡−𝑖), 𝑡) ≤ 𝑣𝑖(𝑥(𝑡𝑖, 𝑡−𝑖), 𝑡) − 𝑝𝑖(𝑡𝑖, 𝑡−𝑖),

𝑝𝑖(𝑡𝑖, 𝑡−𝑖) ≤ 𝑣𝑖(𝑥(𝑡𝑖, 𝑡−𝑖), 𝑡) − 𝑢𝑖(𝑥(∅, 𝑡−𝑖), 𝑡),

𝑝𝑖(𝑡) ≤ 𝑣𝑖(𝑥(𝑡𝑖, 𝑡−𝑖), 𝑡) − 𝑢𝑖(𝑥(∅, 𝑡−𝑖), 𝑡).

For simplicity, we define the upper bound of 𝑝(𝑡′) as

𝑝(𝑡) ≜ {𝑣𝑖(𝑥(𝑡𝑖, 𝑡−𝑖), 𝑡) − 𝑢𝑖(𝑥(∅, 𝑡−𝑖), 𝑡).

The ex-post IC property requires that ∀𝑡𝑖 ≥ 𝑡′
𝑖
, ∀𝑡−𝑖, ∀𝑖,

𝑢𝑖(𝑥(𝑡𝑖, 𝑡−𝑖), 𝑡) ≥ 𝑢𝑖(𝑥(𝑡′𝑖 , 𝑡−𝑖), 𝑡).

A little re-arrangement gives:

𝑝𝑖(𝑡𝑖, 𝑡−𝑖) − 𝑝𝑖(𝑡′𝑖 , 𝑡−𝑖) ≤ 𝑣𝑖(𝑥(𝑡𝑖, 𝑡−𝑖), 𝑡) − 𝑣𝑖(𝑥(𝑡′𝑖 , 𝑡−𝑖), 𝑡) ≜𝐺𝑎𝑝𝑖(𝑡′𝑖 , 𝑡𝑖, 𝑡−𝑖).

Note that the inequality correlations between the payments form a system of difference constraints. The form of update of the 
payments is almost identical to that of the shortest path problem. In fact, the connection between pricing problems and shortest path 
problems has long been observed in the literature. For example, the problem of finding the clearing price of a market with multiple 
buyers and sellers can be formulated as a maximum or a minimum flow problem, which can be solved by the successive shortest 
path algorithm (which is equivalent to the Hungarian algorithm [27,28] under certain conditions). Another line of work considers 
using auction algorithms [29] to solve shortest path problems [30–32].

We make use of such a connection to design our algorithm. We assume that all the value functions are common knowledge, the 
efficient allocation is then determined because the mechanism always chooses the one that maximizes the social welfare. Thus it 
suffices to figure out whether there is a payment rule 𝑝(𝑡′) which makes the mechanism IR, ex-post IC and weakly budget-balanced. 
Since the valid data size for each agent is bounded in practice, we assume the mechanism only decides the payment functions on the 
data range [0, 𝐷], and discretize the type space into intervals of length 𝜖, which is also the minimal size of the data. Thus each agent’s 
type is a multiple of 𝜖. Note that since the utility function is general, all the points in the action space would influence the properties 
and existence of the mechanism, thus it is necessary to enumerate all the points in the space, which already takes exponential time. 
Therefore, the running time of any algorithm that finds a desirable mechanism in the general setting is exponential in 𝑛.

Nevertheless, we give Algorithm 1 that checks if a desirable mechanism exists. The algorithm also outputs a desirable mechanism 
that is revenue maximizing if such mechanisms exist.

We now show the correctness of Algorithm 1.

Theorem 4. Taking agents’ valuation functions as input, Algorithm 1 outputs the answer of the decision problem of whether there exists 
a mechanism that guarantees IR, ex-post IC, efficiency and weak budget balance simultaneously, and specifies the payments that achieve 
maximal revenue if the answer is yes.

Proof. Suppose that there is a larger payment for agent 𝑖 such that 𝑝𝑖(𝑡′) > 𝑝max
𝑖

(𝑡′) where 𝑡′ is the profile of reported types. In the 
process of our algorithm, the 𝑝max

𝑖
(𝑡′) is the minimal path length from 𝑉 𝐵−𝑖 to 𝑉𝑡𝑖 𝑡−𝑖, denoted by (𝑉 𝐵−𝑖, 𝑉𝑡𝑖1 𝑡−𝑖, 𝑉𝑡𝑖2 𝑡−𝑖, ⋯, 𝑉𝑡𝑖𝑘=𝑡′𝑖 𝑡−𝑖). 

By the definition of edge weight, we have the following inequalities:

𝑝𝑖(𝑡𝑖1, 𝑡−𝑖) ≤ 𝑝𝑖(𝑡𝑖1, 𝑡−𝑖),

𝑝𝑖(𝑡𝑖2, 𝑡−𝑖) − 𝑝𝑖(𝑡𝑖1, 𝑡−𝑖) ≤𝐺𝑎𝑝𝑖(𝑡𝑖1, 𝑡𝑖2, 𝑡−𝑖),
9
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Algorithm 1: Finding desirable mechanisms

input : Agents’ valuation functions 𝑣.

Use the function 𝑣𝑖 to calculate all the 𝐺𝑎𝑝𝑖(𝑡′𝑖 , 𝑡𝑖, 𝑡−𝑖) and 𝑝𝑖(𝑡𝑖, 𝑡−𝑖) for each 𝑖;
Initialize all 𝑝𝑚𝑎𝑥

𝑖
(𝑡𝑖, 𝑡−𝑖) to be 𝑝𝑖(𝑡𝑖, 𝑡−𝑖) for each 𝑖;

for 𝑖 = 1 to 𝑛 do

for 𝑡−𝑖 = (∅, ∅, ⋯ , ∅) to (𝐷, 𝐷, ⋯ , 𝐷) (increment = 𝜖 on each dimension) do

Build an empty graph;

For each 𝑝𝑖(𝑡𝑖, 𝑡−𝑖), construct a vertex 𝑉𝑡𝑖𝑡−𝑖
and insert it into the graph;

Construct a base vertex 𝑉 𝐵𝑡−𝑖
which denotes the payment zero into the graph;

for 𝑡𝑖 = 0 to 𝐷 (increment = 𝜖) do

Add an edge from 𝑉 𝐵𝑡−𝑖
to 𝑉𝑡𝑖 𝑡−𝑖

with weight 𝑝(𝑡𝑖, 𝑡−𝑖);
for 𝑡′

𝑖
= 0 to 𝑡𝑖 (increment = 𝜖) do

Add an edge with weight 𝐺𝑎𝑝𝑖(𝑡′𝑖 , 𝑡𝑖, 𝑡−𝑖) from 𝑉𝑡′
𝑖
𝑡−𝑖

to 𝑉𝑡𝑖 𝑡−𝑖
;

Use the Single-Source Shortest-Path algorithm to find the shortest path from 𝑉 𝐵𝑡−𝑖
to all the other vertices. These are the maximum solutions 

𝑝𝑚𝑎𝑥
𝑖

(𝑡𝑖, 𝑡−𝑖) for each payment case;

if
∑𝑛

𝑗=1 𝑝
𝑚𝑎𝑥
𝑗

(𝑡)< 0 then

return There is no desirable mechanism.

return 𝑝𝑚𝑎𝑥
𝑖

as the payment functions.

𝑝𝑖(𝑡𝑖𝑘, 𝑡−𝑖) − 𝑝𝑖(𝑡𝑖(𝑘−1), 𝑡−𝑖) ≤𝐺𝑎𝑝𝑖(𝑡𝑖1, 𝑡𝑖2, 𝑡−𝑖).

Adding these inequalities together, we get

𝑝𝑖(𝑡′) ≤ 𝑝𝑖(𝑡𝑖1, 𝑡−𝑖) +
𝑘−1∑
𝑗=1

𝐺𝑎𝑝𝑖(𝑡𝑖𝑗 , 𝑡𝑖(𝑗+1), 𝑡−𝑖) = 𝑝max
𝑖

(𝑡′).

If 𝑝𝑖(𝑡′) < 𝑝max
𝑖

(𝑡′) holds, this would violate at least 1 of the 𝑘 inequalities above. If the first inequality is violated, the mechanism 
would not be IR, by the definition of 𝑝𝑖(𝑡𝑖1, 𝑡−𝑖). If any other inequality is violated, the mechanism would not be ex-post IC, by the 
definition of 𝐺𝑎𝑝𝑖(𝑡𝑖𝑗 , 𝑡𝑖(𝑗+1), 𝑡−𝑖).

On the other hand, if we select 𝑝max
𝑖

(𝑡′) to be payment of agent 𝑖, all the inequalities should be satisfied, otherwise the shortest 
path would be updated to a smaller length.

Therefore the 𝑝max
𝑖

(𝑡′) must be the maximum payment for agent 𝑖. If the maximal payment sum up to less than 0, there would 
obviously be no mechanism that is IR, ex-post IC and weakly budget-balanced under the efficient allocation function. □

5.1. Computational complexity of Algorithm 1

As we already mentioned in this section, any algorithm that checks the existence of a desirable mechanism in the general setting 
takes exponential time. This is inevitable as the input size is already exponential. Now we analyze the complexity of Algorithm 1 in 
detail.

Given any efficient allocation, Algorithm 1 can actually be used to determine if there is a payment function that makes the whole 
mechanism desirable. However, we still need to enumerate the allocation space to find an efficient allocation. Since the total valid 
data collected from each agent is at most 𝐷 ⋅𝑛, there are 𝐷⋅𝑛

𝜖
+1 possible models that can be allocated to each agent. Therefore, there 

are at most 
(
𝐷⋅𝑛
𝜖

+ 1
)(𝐷∕𝜖)𝑛

efficient allocations which may tie in terms of social welfare. For each allocation, we analyze the running 
time of Algorithm 1. The running time of the preprocessing stage is dominated by the preprocessing of computing 𝐺𝑎𝑝𝑖(𝑡′𝑖 , 𝑡𝑖, 𝑡−𝑖), 

which is 𝑂
(
𝑛 ⋅

(
𝐷

𝜖

)𝑛+1
)

. The graph constructed for the Single-Source Shortest-Path algorithm contains at most 𝑂
(
𝐷2

𝜖2

)
edges and 

𝑂(𝐷∕𝜖) vertices, thus the total running time after preprocessing is 𝑂
(
𝑛 ⋅ (𝐷∕𝜖)𝑛−1 ⋅ (𝐷∕𝜖)2 ⋅ log(𝐷∕𝜖)

)
=𝑂

(
𝑛 ⋅ (𝐷∕𝜖)𝑛+1 ⋅ log(𝐷∕𝜖)

)
. 

Taking allocation enumeration into account, the complete running time is then 𝑂
((

𝐷⋅𝑛
𝜖

+ 1
)(𝐷∕𝜖)𝑛

⋅ 𝑛 ⋅ (𝐷∕𝜖)𝑛+1 ⋅ log(𝐷∕𝜖)
)

, which 

is a double exponential function on 𝑛.

Such a running time clearly makes the problem intractable. However, we can circumvent the double-exponent dependence on 𝑛
by introducing a natural assumption on the market as follows.

Assumption 4 (Monotone Market). A market is monotone, if the valuation functions {𝑣𝑖}𝑛𝑖=1 satisfies the following constraint:

𝑛∑
𝑖=1

𝑣𝑖(𝑞𝑖, 𝑞−𝑖) <
𝑛∑
𝑖=1

𝑣𝑖(𝑞′𝑖 , 𝑞
′
−𝑖),∀𝑞 < 𝑞′,
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where 𝑞 < 𝑞′ means ∀𝑖 ∈ [𝑛], 𝑞𝑖 ≤ 𝑞′
𝑖

and ∃ 𝑖 ∈ [𝑛], 𝑞𝑖 < 𝑞′
𝑖
.
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Intuitively, the above assumption says that when an agent adopts a model of a higher quality in the market, the overall market 
size strictly increases. In essence, this assumption mirrors the idea that as technology advances, the demand for a particular service 
type expands, drawing in more users. Given such assumption, we can significantly reduce the runtime of searching for a desirable 
algorithm by only focusing on a unique efficient allocation function.

Proposition 1. In a monotone market, the only efficient allocation is to assign the best model to every agent.

Proof. Consider the case when all the agents report truthfully. For each agent, using a better model in the market will strictly 
increase the social welfare. Since the best model an agent can use is the model trained with all the data from all agents, assigning 
the best model to every agent is the only efficient allocation. □

The above proposition shows that in a monotone market, there exists a unique efficient allocation. Determining this allocation for 
each type 𝑡 takes 𝑂 ((𝐷∕𝜖)𝑛) time. Therefore, the algorithm’s overall running time is 𝑂

(
𝑛 ⋅ (𝐷∕𝜖)𝑛+1 ⋅ log(𝐷∕𝜖)

)
, which is reduced to 

a single exponential dependence on 𝑛.

6. Conclusion

In this paper, we study the mechanism design problem for multi-party machine learning. We restrict the action space of each 
agent where he can only misreport a lower type than his actual type and consider the valuation function that is about the allocation 
outcome and the true types of all agents.

Our results show that in our setting, it is possible to find mechanisms that are simultaneously IR, ex-post IC, efficient and weakly 
budget-balanced. In the separable valuation setting, we prove that simply charging each agent the profit he gets from the mechanism 
(i.e., the MEP mechanism) is truthful and revenue-optimal. We also analyze the general setting in a systematical way and provide 
sufficient and necessary conditions for designing a truthful mechanism. These conditions restrict both the allocation function and the 
payment function. Finally, we provide an algorithm to find desirable mechanisms that are truthful, individually rational, efficient 
and weakly budget-balanced simultaneously. Both our sufficient and necessary conditions and algorithmic characterizations indicate 
that in our setting with a weaker truthfulness constraint (i.e., a larger design space), it is possible to achieve more properties but 
much harder to find a mechanism satisfying all of them.
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