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Abstract
Online advertising is a major revenue source for
most Internet companies. The advertising oppor-
tunities are usually sold to advertisers through auc-
tions that take into account the bids of the adver-
tisers, the click-through rates (CTRs), and the con-
version rates (CVRs) of the users. Standard auc-
tion design theory perceives both the CTRs and the
CVRs as constants. We consider a new auction
mechanism that offers coupons to users when dis-
playing the ads. Such coupons allow the user to
buy the advertisers’ products or services at a lower
price, which increases both the CTRs and the CVRs
of the ads.
In this paper, we formulate the problem mathe-
matically and perform a systematic analysis. We
characterize the set of individually rational and
incentive-compatible mechanisms in our setting.
Based on the characterization, we identify the op-
timal strategy of offering coupons that maximizes
the platform’s expected revenue. We also conduct
extensive experiments on both synthetic data and
industrial data. Our experiment results show that
our mechanism significantly improves both the rev-
enue and welfare of the platform, thereby creating a
win-win situation for all parties including the plat-
form, the advertisers, and the user.

1 Introduction
Auction design has become one of the central topics at
the intersection of economics and computer science. Var-
ious auctions are proposed in the literature over the years
[Cramton et al., 2004; Aggarwal et al., 2006; Varian, 2007;
Edelman et al., 2007], including the celebrated Vickrey-
Clarke-Groves (VCG) auction [Clarke, 1971; Vickrey, 1961;
Groves, 1973] and Myerson’s optimal auction [Myerson,
1981]. Both auctions are truthful, where bidders are incen-
tivized to submit their true valuations as their bids. The ap-
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peal of the VCG auction is this mechanism maximizes so-
cial welfare, allocating the item to the bidder with the highest
valuation, while Myerson’s optimal auction maximizes the
seller’s revenue for a single-item scenario.

One of the most successful applications of auction theory is
online advertising, as online advertising is a major source of
revenue for many Internet companies, e.g., Meta, Google and
TikTok. According to the statistics by Statista1, 627 billion
U.S. dollars were spent in 2023 on digital advertisements, and
the industrial is still rapidly growing.

When applied to online advertising systems, besides the
advertisers’ bids, the standard auction design theory also
needs to consider the relevance scores of the ads. Such rele-
vance scores are usually captured by the click-through rates
(CTRs) and the conversion rates (CVRs). Standard auction
design theory implicitly assumes that the CTR and CVR are
known when the user and the ad are given, and thus treat them
as constants during the auction process.

However, in this paper, we consider a setting where the
platform can offer coupons to the users when displaying the
ads. The users can buy the corresponding advertiser’s prod-
ucts or services at a lower price by using the coupons. Thus
the coupons can increase both the CTR and the CVR of the
ads. In such a setting, we can no longer view the CTRs and
CVRs as constants, as offering different coupons can lead to
different CTR and CVR improvements. Therefore, we study
the problem of how to jointly design the coupon strategy, the
allocation rule, and the payment rule to maximize the plat-
form’s revenue.

Coupons offer a financial discount off the regular price for
users when purchasing a product. In economic studies, differ-
ent prices may result in different demands, and such a relation
is often described by a so-called “demand curve” [Mas-Colell
et al., 1995]. The fundamental economic principle known
as the law of demand intuitively states that as the price of a
good falls, the demand rises [Nicholson and Snyder, 2012].
Therefore, offering coupons to the users increases the buy-
ers’ willingness to buy and therefore increases the CTRs and
CVRs of the ads. From this point of view, coupons can be

1https://www.statista.com/topics/990/global-advertising-
market/#topicOverview



viewed as a way to balance the price and demand for adver-
tisers. Most advertisers lack the ability to draw the entire
demand curve for their products, while the platform can pre-
dict the CTR and CVR changes accurately with its massive
amount of data. By leveraging such additional knowledge,
the platform can design pricing strategies to better serve the
interests of the advertisers.

In our paper, we analyze the auction design problem with
user coupons theoretically and conduct experiments to eval-
uate its performance. It is worth mentioning that, the first
online ad auction mechanism that consider user coupons is
proposed by Ni et al. [2023]. They empirically show that
such mechanisms indeed improve the revenue of the plat-
form. However, they consider the auto-bidding setting and
their mechanism is not incentive compatible when the adver-
tisers have quasi-linear utilities.

We summarize our contributions in this paper as follows:

• We model the auction design problem with user coupons
mathematically and characterize the set of incentive
compatible and individually rational mechanisms.

• Based on the above result, we formulate the revenue-
maximization problem as a mathematical program, and
provide an optimal mechanism.

• We conduct extensive experiments with both synthetic
and industrial data sets to demonstrate the performance
of our mechanism.

1.1 Related Work
Our paper is clearly related to the optimal mechanism de-
sign [Myerson, 1981; Maskin et al., 1981; Pavlov, 2011;
Wang and Tang, 2014]. Another line of work aims to im-
prove revenue for commonly used mechanisms in practice,
such as the second-price auction, the generalized second-
price auction, and the VCG auction. These methods include
optimizing reserve prices [Hartline and Roughgarden, 2009;
Balseiro et al., 2021], boosts [Golrezaei et al., 2021; Deng et
al., 2021], offering coupon to advertisers [Shen et al., 2020;
Shen et al., 2021].

Recently, Ni et al. [2023] proposed a new mechanism that
offers coupons to users to increase the platform’s revenue.
However, they study the problem in an auto-bidding setting,
and in their model, the cost of offering coupons is covered
by the advertisers, making their mechanism nontruthful for
advertisers with quasi-linear utilities.

Another relevant topic is the effect of offering coupons
on consumer behaviors [Gopalakrishnan and Park, 2021;
Ali and Muhammad, 2021; Li et al., 2020; Albert and Gold-
enberg, 2022]. They show that coupons in general have posi-
tive effects on consumers’ purchasing behavior, and therefore
increase sales volumes.

2 Preliminaries
In this section, we describe how we mathematically model the
problem of designing auction mechanisms with user coupons
and introduce some basic definitions into our setting.

2.1 Model
An online advertising platform (e.g., a search engine or a
short-form video platform) sells an ad slot to n advertisers,
denoted by [n] := {1, 2, · · · , n}. Each advertiser i ∈ [n] has
a valuation vi, which is drawn from a cumulative distribution
function Fi(vi). We assume that Fi(vi) is differentiable with
density function fi(vi) and that fi(vi) is bounded and sup-
ported on V = [0, v], i.e., 0 < fi(vi) < ∞,∀vi ∈ V . The
valuation can be interpreted as the advertiser’s willingness to
pay for one click. When a user enters a query into a search en-
gine or scrolls down on a short-form video app, an auction is
triggered. In the standard auction setting, the advertisers first
submit their bids to the platform. Denote the bid of advertiser
i by bi ∈ B, which may be different from the true valuation
vi. The platform determines who wins the auctions and how
much the winner should pay, and then shows the winner’s ad
to the user. During the auction process, the platform usu-
ally also takes into account the click-through rate (CTR) and
the conversion rate (CVR) of each ad, where the CTR is the
probability of the user clicking on an ad and the CVR is the
probability of buying the advertiser’s product conditioned on
clicking the ad.

In this paper, we consider a setting where the platform also
offers a coupon to the user when displaying the ad. Though
offered by the platform, the coupon can be used when the user
buys the advertiser’s products. Such a coupon can clearly
make the ad and the advertiser’s product more attractive to
the user and thus increase both the CTR and the CVR of the
ad.

Therefore, different from the standard auction setting, be-
sides the winner and the payment, the platform also needs
to determine a coupon ci ∈ C = [0, c], for each advertiser
i ∈ [n]. We use the function hi := C 7→ (0, 1] to represent the
CTR of advertiser i’s ad when coupon ci is offered to the user.
In particular, hi(0) represents the CTR without a coupon. An
ad is usually more attractive to a user if a larger coupon is
offered. Thus we assume hi(ci) is a strictly increasing func-
tion. Similarly, we use ri := C 7→ [0, 1] to represent the CVR
of advertiser i’s ad when coupon ci is offered, which is also
assumed to be strictly increasing. For simplicity, through-
out the paper, we also make the assumption that both hi(ci)
and ri(ci) are differentiable. If the user buys the advertiser’s
product, the payment of the user is the price of the product
less the coupon ci, and the platform also pays ci to the adver-
tiser (directly or indirectly through the user) to ensure that the
total payment is still the price of the product. Therefore, the
expected cost of the coupon can be written as hi(ci)ri(ci)ci.

In our setting, apart from an allocation rule and a payment
rule, a mechanism should also include a coupon function. In
this paper, we allow the coupon ci to depend on the bid bi
submitted by advertiser i. Formally, we have the following
definition.
Definition 1 (Mechanism). A mechanism M is a tuple
(ϕ, x, p), where:

• ϕ = (ϕ1, ϕ2 · · · , ϕn) is the coupon function, where ϕi :
B 7→ C maps the bid bi of advertiser i to the coupon ci
to be offered to the user;

• x = (x1, x2, · · · , xn) is the allocation rule, where xi :



Bn 7→ [0, 1] takes the bid profile as input and outputs
the probability of advertiser i winning the auction;

• p = (p1, p2, · · · , pn) is the payment function, where pi :
Bn 7→ R+ takes the bid profile as input and outputs the
payment of advertiser i to the platform.

Let v = (v1, · · · , vn) be the valuation profile of all ad-
vertisers and v−i = (v1, · · · , vi−1, vi+1, · · · , vn) the valua-
tion profile of all advertisers except advertiser i. We assume
that the valuation of the n advertisers are independent random
variables. Thus, the joint density function f := Vn 7→ R+

for the vector v = (v1, · · · , vn) of individual valuations is

f(v) =
∏
i∈[n]

fi(vi).

Also, we define f−i := Vn−1 7→ R+ as the join density
function of vector v−i,

f−i(v−i) =
∏

j∈[n]\i

fj(vj).

Similarly, let b = (b1, · · · , bn) and b−i =
(b1, · · · , bi−1, bi+1, · · · , bn) denote all advertisers’ bids
profile and all advertisers’ bids profile except advertiser i.

The auction procedure is as follows:

1. All advertisers simultaneously report their bid bi to the
platform;

2. After receiving the bids, the platform calculates the
coupon ci for each advertiser i ∈ [n] according to the
coupon function ϕi(bi);

3. The platform computes the CTR hi and the CVR ri of
each ad i based on the coupon ci;

4. The platform determines the winner and the payment ac-
cording to the allocation rule x and the payment rule p;

5. The platform displays the ad and offers the coupon to-
gether to the user.

In this paper, we consider cost-per-click auctions, i.e., an
advertiser only pays the platform when their ad is clicked by
the user. Suppose all advertisers have quasi-linear utilities.
Formally, if the bid profile is b, in mechanism M, the ex-
pected utility of advertiser i is

ui(M,b) = xi(bi,b−i)hi(ϕi(bi))vi − pi(bi,b−i).

Since the platform needs to provide coupons to the users, the
revenue of the platform can be represented as the payments
from the advertisers in the auction minus the cost of providing
the coupon:

Rev(b) =
n∑

i=1

pi(b)−
n∑

i=1

xi(b)hi(ϕi(bi))ri(ϕi(bi))ϕi(bi).

Naturally, a mechanism should satisfy the following con-
straint as the platform only has a single slot for sale.

n∑
i=1

xi(b) ≤ 1,∀b. (1)

2.2 Direct Feasible Auction Mechanisms
A mechanism induces a Bayesian game among the advertis-
ers. In such a game, an ad advertiser may have incentives to
place a bid different from their true valuation if the bid gives
them a better utility. There is a special class of mechanisms
where the advertisers’ utilities are maximized by submitting
their true valuations. Such mechanisms are called truthful
mechanisms. Before formally defining truthfulness, we first
introduce some useful notations. Let Ui(M, vi) be the ex-
pected utility of advertiser i with valuation vi, i.e.,

Ui(M, vi)

=

∫
−i

[xi(vi,v−i)hi(ϕi(vi))vi − pi(vi,v−i)]f−i(v−i) dv−i.

For ease of presentation, we also define

Xi(vi) =

∫
−i

xi(vi,v−i)f−i(v−i) dv−i,

Pi(vi) =

∫
−i

pi(vi,v−i)f−i(v−i) dv−i.

to be the interim allocation rule and the interim payment rule,
which are the expected winning probability and the expected
payment of advertiser i when the valuation is vi.

Definition 2 (Incentive Compatibility (IC)). A mechanism is
incentive compatible or truthful, if all advertisers reporting
bi = vi form a Bayes-Nash equilibrium, i.e.,

Ui(M, vi) ≥ Ui(M, s),∀s ∈ V,∀i ∈ [n]. (2)

According to the celebrated revelation principle [Myerson,
1979; Gibbard, 1973], we can, without loss of generality, re-
strict our attention to truthful mechanisms.

Another important property is individual rationality, which
ensures the participation of the advertisers.

Definition 3 (Individual Rationality (IR)). A mechanism is
individually rational if participating in the auction always
leads to a non-negative expected utility for all advertisers,
i.e., for advertiser i with valuation vi, we have

Ui(M, vi) ≥ 0. (3)

In this paper, we consider the set of feasible mechanisms.
Formally,

Definition 4. A mechanism M = (ϕ, x, p) is feasible if it
does not oversell, and satisfies both the IC and IR properties,
i.e., M satisfies Equation (1), (2) and (3).

The following lemma characterizes feasible mechanisms.

Lemma 1. A mechanism (ϕ, x, p) is feasible, if and only if
for any valuation profile v, the following conditions hold:

1. Function hi(ϕi(vi))Xi(vi) is monotone non-decreasing
with respect to vi.

2. The expected payment of advertiser i satisfies

Pi(vi) = vihi(ϕi(vi))Xi(vi)−
∫ vi

0

hi(ϕi(s))Xi(s) ds.

(4)



3. The allocation rule satisfies
n∑

i=1

xi(v) ≤ 1,∀v. (5)

According to Equation (4) in Lemma 1, to ensure incen-
tive compatibility, the advertiser’s payment should take into
consideration the CTR’s increase resulted from the coupons.
However, it may be difficult to jointly design the coupon
function ϕi(vi) and the allocation rule Xi(vi) to ensure that
the function hi(ϕi(vi))Xi(vi) is monotone non-decreasing,
especially when the CTR function hi(·) is represented as a
neural network model in most industrial applications. The
following corollary gives a sufficient condition in which the
coupon function and the allocation rule can be decoupled.
Corollary 1. The mechanism M = (ϕ, x, p) is feasible if the
following conditions hold:

1. Function ϕi(vi) and Xi(vi) are both monotone non-
decreasing with respect to vi;

2. Equation (4) and (5) are satisfied.

In the standard auction design setting with no coupons, it
is well-known that the monotonicity of Xi(vi) together al-
ready implies the incentive compatibility property. The above
corollary shows that any such mechanism is also incentive-
compatible in our setting, as long as the coupon function is
monotone. Therefore, applying any monotone coupon func-
tion to an existing truthful mechanism does not violate the IC
property, making such coupon designs easier to implement.

2.3 Revenue Maximization Mechanism
In this section, we characterize revenue maximization mech-
anisms in our setting. Before stating our results, we define a
different version of the virtual value function here.
Definition 5. For each advertiser i, define

Ji(vi) =

[
vi −

1− Fi(vi)

fi(vi)
− ri(ϕi(vi))ϕi(vi)

]
hi(ϕi(vi)).

The standard definition of the virtual value function is:

κi(vi) = vi −
1− Fi(vi)

fi(vi)
.

Our definition is different in that we also include the coupon
function. The standard definition of the virtual value function
is irrelevant to the mechanism, while here we need to take into
consideration the coupon function, which is part of the the
mechanism. Using the standard definition, our virtual value
function can be written as:

Ji(vi) = [κi(vi)− ri(ϕi(vi))ϕi(vi)]hi(ϕi(vi)).

The following Lemma 2 is similar to the Myerson lemma
[Myerson, 1981] and is helpful for designing optimal auc-
tions.
Lemma 2. The revenue of any feasible mechanism M =
(ϕ, x, p) can be written as:∫

v

[
n∑

i=1

Ji(vi)xi(v)

]
f(v) dv. (6)

3 The Optimal Mechanism
According to Lemma 2, to maximize revenue, the platform
should design the coupon function ϕi(vi) and the allocation
rule xi(v) to maximize Equation (6). We choose to design
the two functions separately in order to make the task of opti-
mizing Equation (6) easier, and then show that although sep-
arately designed, the two functions together form a feasible
mechanism.

We first design the coupon function ϕi(vi) to maximize
each Ji(vi). For ease of presentation, we define the function

φi(ci, vi) =

[
vi −

1− Fi(vi)

fi(vi)
− ri(ci)ci

]
hi(ci)

= [κi(vi)− ri(ci)ci]hi(ci).

(7)

Clearly, by plugging in any coupon function ci = ϕi(vi), we
get φi(ϕi(vi), vi) = Ji(vi).

View vi as a parameter and let correspondence Φi(vi) be
the set of maximizers of function φi(ci, vi).

Φi(vi) = {ci ∈ C | φi(ci, vi) ≥ φi(c
′
i, vi),∀c′i ∈ C} . (8)

For any vi, function φi(ci, vi) is a clearly continuous and
bounded function of ci, thus Φi(vi) is always a non-empty
set according to the extreme value theorem. Now we define a
special coupon function2 as

ϕi(vi) = max
ci∈Φi(vi)

ci. (9)

It is clear that such a coupon function maximizes φi(ci, vi) in
a point-wise way, i.e., for any vi, ϕi(vi) optimizes φi(ci, vi).
Thus the virtual value function Ji(vi) is also maximized with
such a choice:

Ji(vi) = φi(ϕi(vi), vi) = max
ci∈C

φi(ci, vi). (10)

Before we discuss our optimal mechanism, we first in-
troduce the increasing difference property of a function and
present some related results that will be useful later.
Definition 6 (Increasing Difference). A function g : A×B 7→
R has increasing differences in (a, b), if for all a′ ≥ a and
b′ ≥ b,

g(a′, b′)− g(a, b′) ≥ g(a′, b)− g(a, b).

If we view b as a parameter of function g, then the dif-
ference of the function values at a′ and a is a function of
b. Increasing difference means the difference function is an
increasing function of the parameter b. The increasing dif-
ference also implies the difference function is an increasing
function of the parameter a.

Note that the property of increasing difference is ubiq-
uitous in game theory. It is applied to cutoff strategies in
Bayesian games [Akerlof, 1970] and more recently in super-
modular games [Levin, 2003].

The following lemma gives a sufficient condition for the
virtual value function Ji(vi) to be non-decreasing.

2A more careful definition would be ϕi(vi) = supci∈Φi(vi)
ci.

However, according to Berge’s maximum theorem [Berge, 1963;
Ok, 2007], The set Φi(vi) is non-empty and compact. Therefore,
supci∈Φi(vi)

ci is attainable in C and sup can be replaced by max.



Lemma 3. If function φi(ci, vi) has increasing differences in
(ci, vi), then Ji(vi) is monotone non-decreasing with respect
to vi.

Now we introduce a technical condition called regularity
[Myerson, 1981], and discuss two cases based on whether a
problem instance is regular or not.

Definition 7 (Regularity). A problem instance is regular,
if for all advertisers, function κi(vi) is monotone non-
decreasing.

The above regularity condition is a standard definition in
the literature. Here, we identify an equivalent condition.

Lemma 4. A problem instance is regular, if and only if func-
tion φi(ci, vi) has increasing differences for all i.

3.1 The Regular Case
Now we design the allocation rule xi(v) in the regular case. It
is clear that to maximize Equation (6), the platform should al-
locate the slot to the advertiser with the highest Ji(vi) among
those with Ji(vi) ≥ 0. We show that this design, together
with the choice of ϕi(vi), forms a feasible mechanism. Let
M(v) = {k | Jk(vk) ≥ Jk′(vk′),∀k′ ∈ [n]} be the set of
advertisers with the highest virtual values. We present our
optimal mechanism for the regular case in theorem 1.

Theorem 1. If a problem instance is regular, then the follow-
ing mechanism M = (ϕ, x, p) is an optimal mechanism:

ϕi(vi) =max{Φi(vi)},

xi(v) =

{
1 if i = min{M(v)} and Ji(vi) ≥ 0

0 otherwise
, (11)

pi(v) =hi(ϕi(vi))xi(vi,v−i)vi

−
∫ vi

0

hi(ϕi(s))xi(s,v−i) ds, (12)

where Φi(vi) is defined in Equation (8).

Proof. By setting ϕi(vi) = max{Φi(vi)}, the function
φi(ci, vi) is maximized pointwisely. Thus, the function
Ji(vi) is maximized. And by setting xi(v) = 1 for the adver-
tiser i with the highest and non-negative Ji(vi), the platform’s
expected revenue (Equation (6)) is maximized. Therefore, the
mechanism defined in Theorem 1 is revenue-optimal.

Now we show that it is also feasible. In particular, we show
that it satisfies the conditions in Corollary 1. According to
Topkis’s Theorem [Topkis, 1978], ϕi(vi) is a monotone non-
decreasing function. Since the problem instance is regular,
we have that Ji(vi) is monotone non-decreasing. It follow
that, given any v−i, the allocation rule xi(vi,v−i) is a mono-
tone non-decreasing function of vi. Taking expectation over
v−i, we have that Xi(vi) is also monotone non-decreasing.
Therefore, the first condition of Corollary 1.

As for the second condition, notice that Equation (5)
clearly holds, and Equation (4) immediately follows from
taking the expectation over v−i on both sides of Equation
(12).

3.2 The Irregular Case
Without the regularity condition, the function Ji(vi) is not a
monotone non-decreasing function. This means the alloca-
tion rule defined in Equation (11) is also not monotone non-
decreasing. As a result, the expected allocation Xi(vi) may
also not be monotone, leading to possible violations of the
first condition in Lemma 1. To address this issue, we apply
the so-called ironing trick to the function κi(vi) to ensure that
the ironed function κi(vi) is monotone. Therefore, the corre-
sponding function φi(ci, vi) has increasing differences. We
show that replacing φi(ci, vi) by φi(ci, vi) yields a feasible
and optimal mechanism. The following definition of ironing
is a standard technique in the literature.

Definition 8 (Ironing [Myerson, 1981]). Let qi = Fi(vi) ∈
[0, 1] and define ki(qi) = κi

(
F−1
i (qi)

)
. The ironing proce-

dure is as follows.

1. Let Ki(qi) be the integral of ki(qi):

Ki(qi) =

∫ qi

0

ki(s) ds;

2. Define Li : [0, 1] 7→ R be the “convex hull” of the graph
of function Ki(qi):

Li(qi) = min
q1,q2,γ

{
γKi(q

1) + (1− γ)Ki(q
2)
}
,

where q1, q2, γ ∈ [0, 1] and γq1 + (1− γ)q2 = qi;

3. Let ℓi(qi) be the derivative of Li(qi):

ℓi(qi) = L
′

i(qi);

4. Obtain κi(vi) by variable substitution:

κi(vi) = ℓi(qi) = ℓi(Fi(vi)).

Based on the ironed κi(vi), we can define:

φi(ci, vi) = hi(ci)[κi(vi)− ri(ci)ci]

Φi(vi) = {ci ∈ C | φi(ci, vi) ≥ φi(c
′
i, vi),∀c′i ∈ C} ,

J i(vi) = φi(ϕi(vi), vi).

After the ironing procedure, the function κi(vi) becomes
a monotone non-decreasing function. The monotonicity of
both hi(ci) and κi(vi) implies the ironed function φi(ci, vi)
has increasing difference.

Before we present our main result, we prove a lemma that
is helpful when deriving the optimal mechanism in the irreg-
ular case.

Lemma 5. For any feasible mechanism (ϕ, x, p), the plat-
form’s revenue can be written as∫

v

[
n∑

i=1

φi(ϕi(vi), vi)xi(v)

]
f(v) dv

+

∫
v

[
n∑

i=1

[ki(Fi(vi))− ℓi(Fi(vi))]hi(ϕi(vi))xi(v)

]
f(v) dv,

(13)



Directly optimizing Equation (6) may result in an infeasi-
ble mechanism. Lemme 5 states that we can optimize Equa-
tion (13) instead.

Theorem 2. In an irregular problem instance, define

M(v) = {k | Jk(vk) ≥ Jk′(vk′),∀k′ ∈ [n]}.

Then the following mechanism M = (ϕ, x, p) is an optimal
mechanism:

ϕi(vi) =max{Φi(vi)},

xi(v) =

{
1 if i = min{M(v)} and J i(vi) ≥ 0

0 otherwise
, (14)

pi(v) =hi(ϕi(vi))xi(vi,v−i)vi

−
∫ vi

0

hi(ϕi(s))xi(s,v−i) ds, (15)

Note that for the regular case, Theorem 2 is the same as
Theorem 1. Theorem 2 can be applied to any general case.

4 Properties of the Optimal Mechanism
In this section, we derive properties of the optimal mecha-
nism, and try to understand the benefits brought by including
user coupons in our setting. We first identify a simple case
where the platform should not offer a coupon.

Lemma 6. The optimal mechanism does not offer coupons
for advertiser i if κi(vi) ≤ 0.

The following result shows that if the optimal mechanism
offers a coupon, then the marginal cost of the coupon should
equal to the marginal gain in revenue.

Lemma 7. If vi satisfies ϕ̄i(vi) > 0, then we have:

κ̄i(vi)
d

dci
hi(ci)

∣∣∣∣
ci=ϕ̄i(vi)

=
d

dci
[hi(ci)ri(ci)ci]

∣∣∣∣
ci=ϕ̄i(vi)

.

If advertiser i’s ad is displayed, the probability that
the user buys the advertiser’s product is hi(ci)ri(ci). So
hi(ci)ri(ci)ci is the expected cost of the platform due to pro-
viding the coupon. In the standard auction setting, when bid-
ding vi, κi(vi) can be regarded as the contribution of adver-
tiser i to the platform’s revenue for one click, and the per-
impression contribution is then κi(vi)hi(0). However, in our
setting, the platform’s revenue also comes from the CTR in-
crease for offering coupons to the users, i.e., κi(vi)hi(ci).
Lemma 7 shows that the optimal coupon should be such that
the marginal coupon cost is exactly covered by the marginal
revenue gain.

5 Experiments
We tested our proposed mechanism by conducting a series
of experiments, using both synthetic and industrial data. We
compared it with three baseline methods: Myerson Auc-
tion, Auction with Constant Coupon Value (CCV), and Auc-
tion with Randomized Coupon Value (RCV). The Myerson
Auction doesn’t offer coupons, while CCV and RCV offer
coupons to users. The coupon values in CCV are constant,

while in RCV they’re randomized. The key difference be-
tween CCV, RCV, and our method is the coupon function. In
our method, coupon values depend on the advertisers’ bids,
unlike in CCV and RCV. However, all three methods meet
the conditions of Lemma 1, so the optimal bidding strategy is
to bid truthfully.

5.1 Synthetic Data
We generate a data set using a method similar to the one in
[Ni et al., 2023]. We consider a pre-defined coupon set that
contains only several possible coupon values, and we gener-
ate the corresponding CTRs and CVRs. We suppose there are
n = 8 advertisers and that they participate in m = 100, 000
auctions. In each auction, each advertiser’s values are drawn
from the same log-normal distribution (ln vi ∼ N(3, 1)).
For each advertiser i, the CTR without coupon hi(0) is
drawn from the uniform distribution U(0.005, 0.5), and the
CVR without coupon ri(0) is also drawn from the same uni-
form distribution. The coupon set contains only 4 different
coupons: C = {0, 2, 4, 8}. For each advertiser i, we let
hi(2) = 1.1 · hi(0), hi(4) = 1.2 · hi(0), hi(8) = 1.3 · hi(0),
and ri(2) = 1.1 ·ri(0), ri(4) = 1.2 ·ri(0), ri(8) = 1.3 ·ri(0).
We use 80, 000 auctions to select the best coupon strategies
for the second and third baseline algorithms. We use the other
20, 000 auctions to verify the experimental results between
our method and the baseline methods.

Method
We simulate each auction via the following procedures in our
methods.

1. For each advertiser i, we enumerate all coupons and
compute each advertiser’s best coupon using our mech-
anism.

2. We rank advertisers according to the virtual values de-
fined in Definition 5.

3. The advertiser with the highest virtual value wins the
auction and his payment is computed via payment rule
(Equation (12)) in Theorem 1.

Results
We compare the performance of our mechanism with the
other three baseline auctions mentioned above. 3

We first verify that in this experiment environment, both
ϕi(vi) and Ji(vi) are monotone non-decreasing with respect
to vi for each i. Since all advertisers’ values, CTRs, and
CVRs are drawn from i.i.d. distributions, we only need to
verify the monotonicity of a single advertiser. We sample one
CTR and one CVR for one advertiser and use different valua-
tions to compute the corresponding coupon and virtual value
according to the coupon function in Theorem 1 and virtual
value function defined in Definiton 5 for each valuation. The
results are shown in Figure 1(a) and 1(b). The monotonic-
ity of both ϕi(vi) and Ji(vi) indicates that we do not need to
apply the ironing technique to guarantee the IC condition.

3We choose not to compare our mechanism against [Ni et al.,
2023] since their mechanism is not truthful in our setting, and it is
not clear how the advertisers would bid under their mechanism.



(a) Coupon function (b) Virtual value function

Figure 1: The advertiser’s coupon and virtual value as a function of
the value.

Then we simulate the 20,000 auctions and compute the av-
erage revenue, social welfare, and the advertisers’ total util-
ities. The results are shown in Table 1. Compared to the
Myerson auction without offering coupons, the auction with
constant coupon values, and the auction with randomized
coupon values, our mechanism increases revenue by about
19.76%, 1.9%, and 6.4% respectively. Also, our mechanism
increases the advertisers’ total utility by 32.58%, 10.47% and
15.52% respectively, and the social welfare by 26%, 6.2%,
and 10.96% respectively. According to the synthetic data-
generating method, the advertisers and the users are all sym-
metric. Thus, the constant coupon value strategy is better than
the randomized coupon value strategy. These results show
that our mechanism leads to a win-win situation by increas-
ing social welfare and revenue simultaneously. Our mecha-
nism is also clearly beneficial to the users as they can buy the
products or services provided by the advertisers with a lower
price.

Method Revenue Social Welfare Utility

Myerson 14.32 28.41 14.09
CCV 16.83 33.74 16.91
RCV 16.12 32.29 16.17
Ours 17.15 35.83 18.68

Table 1: Synthetic data results

5.2 Industrial Data
We also conduct experiments using an industrial data set.
The industrial data we used comes from Kuaishou, a ma-
jor short-form video and live-streaming platform. It is worth
mentioning that the platform charges the advertisers in a per-
impression fashion. Thus the CTR value is unimportant. In
this case, we re-define the CVR ri(·) to be the probability
of the user buying a product or service from the advertiser,
conditioned on seeing the ad. We also need to re-define the
virtual value function as follows:

Ĵi(vi) = ri(ϕi(vi))
[
κi(vi)− ϕi(vi)

]
(16)

Our mechanism can also be easily modified accordingly, thus
we omit the detailed definition here.

We select 1,000 ads to conduct the experiment. In this ex-
periment, we trained the CVR prediction model instead of

randomly sampling them from certain distributions. To col-
lect enough data for the training, we offer different coupons
for these ads in 14 days and sampled 300,000 data records.
Our data contains numerous features for users, products, and
advertisements, respectively.

We sample 100 advertisers and 100,000 users to conduct
the auction process. Then, we randomly choose 80,000 users
to select the best coupon strategies for the second and third
baseline algorithms. We use the rest to verify the experimen-
tal results between our method and the baseline methods.

Method
We conduct the experiment using the following procedure:

1. We train a CVR model using the collected data. The
input of the model consists of all the features mentioned
above, as well as the coupon value in order to predict the
CVR for different coupons.

2. For each auction, we sample a user from the set of
users and predict each advertiser’s CVR using our CVR
model. Then we discrete the coupon space for each ad-
vertiser, compute the ϕi(ci, vi) for each possible coupon
ci, and choose the maximum one as the optimal coupon.

3. We rank advertisers according to the modified virtual
value function (Equation (16)) and allocate the slot to
the advertiser with the highest virtual value and compute
his payment via the payment rule (Equation (12)).

Results
The results are shown in Table 2, where we normalize the re-
sults using the advertiser’s utility in Myerson Auction. Com-
pared with the other three baseline methods, our mechanism
increases revenue by 28%, 27%, and 16% respectively. Our
mechanism increases the advertisers’ total utility by 313%,
91%, and 43% respectively. Our mechanism increases social
welfare by 67%, 43%, and 24% respectively.

Method Revenue Social Welfare Utility

Myerson 6.33 7.33 1.00
CCV 6.42 8.58 2.16
RCV 6.98 9.87 2.89
Ours 8.13 12.26 4.13

Table 2: Industrial data results

6 Conclusion
In this paper, we consider the auction design problem of on-
line ad auction with user coupons. Our mechanism space
contains that of the standard auction setting as a special sub-
set. Thus, the optimal mechanism in our setting can achieve
a higher revenue than the celebrated Myerson auction. We
characterize the set of IR and IC mechanisms and also pro-
vide the optimal mechanism in closed form. Such a mecha-
nism can be viewed as optimizing the product price for the
advertisers to balance price and demand by using additional
knowledge possessed by the platform. Our experiments show
that our mechanism leads to a win-win situation for the plat-
form, the advertisers, and the users.
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Appendix
A Omitted Proofs in Section 2
A.1 Proof of Lemma 1
Proof. We first show that a feasible mechanism must satisfy
the 3 conditions. We only prove the first two conditions as
the third one is obvious.

By definition, a feasible mechanism is incentive-
compatible. Therefore, for any s,

hi(ϕi(vi))Xi(vi)vi − Pi(vi)

≥hi(ϕi(s))Xi(s)vi − Pi(s)
(17)

hi(ϕi(s))Xi(s)s− Pi(s)

≥hi(ϕi(vi))Xi(vi)s− Pi(vi)
(18)

Combining inequality (17) and (18) gives
[hi(ϕi(vi))Xi(vi)− hi(ϕi(s))Xi(s)] vi

≥Pi(vi)− Pi(s)

≥ [hi(ϕi(vi))Xi(vi)− hi(ϕi(s))Xi(s)] s.

(19)

It follows that
[hi(ϕi(vi))Xi(vi)− hi(ϕi(s))Xi(s)](vi − s) ≥ 0, (20)

which implies hi(ϕi(vi))Xi(vi) is monotone non-decreasing
with respect to vi.

To satisfy the IR constraint, a feasible mechanism should
guarantee that a zero-valued advertiser also has a non-
negative utility:

Ui(M, 0) = 0 · hi(ϕi(0)Xi(0)− Pi(0) = −Pi(0) ≥ 0.

However, as we require Pi(vi) ≥ 0, It follows that Pi(0) = 0
and Ui(M, 0) = 0.

The IC property means that advertiser i’s utility is maxi-
mized by report vi, i.e.,

Ui(M, vi) = max
t∈V

{vihi(ϕi(t))Xi(t)− Pi(t)} .

According to the envelope theorem [Carter, 2001], we get

Ui(M, vi) = Ui(M, 0) +

∫ vi

0

Xi(s)hi(ϕi(s)) ds

=

∫ vi

0

Xi(s)hi(ϕi(s)) ds

Since Ui(M, vi) = hi(ϕi(vi))viXi(vi)− Pi(vi), we have

Pi(vi) = hi(ϕi(vi))viXi(vi)−
∫ vi

0

hi(ϕi(s))Xi(s) ds.

Now we show that satisfying the three conditions leads to
a feasible mechanism. Similarly, we still only prove the first
two conditions, as the third condition is obvious.

For any advertiser i with valuation vi, the utility gain from
reporting a different v′i is

vihi(ϕi(v
′
i))Xi(v

′
i)− Pi(v

′
i)− Ui(M, vi)

=Pi(vi)− Pi(v
′
i)

+ vi [hi(ϕi(v
′
i))Xi(v

′
i)− hi(ϕi(vi))Xi(vi))]

=

∫ v′
i

vi

hi(ϕi(s))Xi(s) ds+ (vi − v′i)hi(ϕi(v
′
i))Xi(v

′
i)

=

∫ v′
i

vi

[hi(ϕi(s))Xi(s)− hi(ϕi(v
′
i))Xi(v

′
i)] ds

Since hi(ϕi(vi))Xi(vi) is monotone non-decreasing, it is
easy to check that no matter v′i > vi or v′i < vi, the utility
gain is non-positive.

A.2 Proof of Lemma 2
Proof. We can rewrite the platform’s objective function as

Rev =

n∑
i=1

∫
v

[pi(b)− xi(b)hi(ϕi(bi))ri(ϕi(bi))ϕi(bi)] dv

=

n∑
i=1

∫
v

hi(ϕi(vi))xi(v)vif(v) dv

+

n∑
i=1

∫
v

(pi(v)− hi(ϕi(vi))xi(v)vi)f(v) dv

−
n∑

i=1

∫
v

xi(v)hi(ϕi(vi))ri(ϕi(vi))ϕi(vi)f(v) dv

(21)

Using Lemma 1, we know that for any feasible mechanism
M: ∫

v

(pi(v)− hi(ϕi(vi))xi(v)vi)f(v) dv

=−
∫ v

0

Ui(M, s)fi(s) ds

=−
∫ v

0

∫ s

0

hi(ϕi(t))Xi(t) dtfi(s) ds

=−
∫ v

0

(1− Fi(t))hi(ϕi(t))Xi(t) dt

=−
∫
v

[
1− Fi(vi)

fi(vi)

]
hi(ϕi(vi))xi(v)f(v) dv

(22)

Inserting (22) into (21) gives:

Rev =

n∑
i=1

∫
v

Ji(vi)xi(v)f(v) dv

=

∫
v

[
n∑

i=1

Ji(vi)xi(v)

]
f(v) dv

B Ommitted Proofs in Section 3
B.1 Proof of Lemma 3
Proof. By definition, function φi(ci, vi) satisfies

φi(c
′
i, v

′
i)− φi(ci, v

′
i) ≥ φi(c

′
i, vi)− φi(ci, vi). (23)

Plugging φi(ci, vi) = [κi(vi)−ri(ci)ci]hi(ci) into the above
equation, we obtain:

[κi(v
′
i)− κi(vi)][hi(c

′
i)− hi(ci)] ≥ 0.

The assumption that function hi(·) is strictly increasing im-
plies that hi(c

′
i) − hi(ci) > 0. In order for Equation (23) to



hold, we must have κi(v
′
i)− κi(vi) ≥ 0. This further implies

that for all ci,
φi(ci, v

′
i)− φi(ci, vi) = [κi(v

′
i)− κi(vi)]hi(ci) ≥ 0. (24)

According to Topkis’s theorem [Topkis, 1978], we have
ϕi(v

′
i) ≥ ϕi(vi) for any v′i ≥ vi. Therefore, we have
φi(ϕi(v

′
i), v

′
i) ≥ φi(ϕi(vi), v

′
i) ≥ φi(ϕi(vi), vi), (25)

where the first inequality is due to the definition of ϕi(v
′
i)

(ϕi(v
′
i) is a maximizer of function φi(·, v′i)), and the sec-

ond inequality is because of Equation (24). Since Ji(vi) =
φi(ϕi(vi), vi), Equation (25) directly implies that Ji(vi) is a
monotone non-decreasing function.

B.2 Proof of Lemma 4
Proof. In the proof of Lemma 3, we already show that if
function φi(ci, vi) has increasing differences, then κi(vi) is a
monotone non-decreasing function (see Equation (24)).

Now we show that if κi(vi) is monotone non-decreasing,
function φi(ci, vi) must have increasing differences. Note
that for any c′i > ci, hi(c

′
i)− hi(ci) > 0. This means for any

v′i > vi, we have
κi(v

′
i)[hi(c

′
i)− hi(ci)] ≥ κi(vi)[hi(c

′
i)− hi(ci)].

Adding the term ri(ci)hi(ci)ci − ri(c
′
i)hi(c

′
i)c

′
i to both sides

of the inequality immediately yields:
φi(c

′
i, v

′
i)− φi(ci, v

′
i) ≥ φi(c

′
i, vi)− φi(ci, vi).

B.3 Proof of Lemma 5
Proof. Since mechanism (ϕ, x, p) is feasible, according to
Lemma 2, the revenue of this mechanism can be written as:∫

v

[
n∑

i=1

Ji(vi)xi(v)

]
f(v) dv

=

∫
v

[
n∑

i=1

φi(ϕi(vi), vi)xi(v)

]
f(v) dv

+

∫
v

[
n∑

i=1

(
φi(ϕi(vi), vi)− φi(ϕi(vi), vi)

)
xi(v)

]
f(v) dv

(26)
Then consider the second term of the right-hand side.∫

v

[
n∑

i=1

[φi(ϕi(vi), vi)− φi(ϕi(vi), vi)]xi(v)

]
f(v) dv

=

∫
v

[
n∑

i=1

[κi(vi)− κi(vi))hi(ϕi(vi))]xi(v)

]
f(v) dv

=

∫
v

[
n∑

i=1

[ki(Fi(vi))− ℓi(Fi(vi))]hi(ϕi(vi))xi(v)

]
f(v) dv

=

n∑
i=1

[∫
v

[ki(Fi(vi))− ℓi(Fi(vi))]hi(ϕi(vi))xi(v)

]
f(v) dv

(27)
Combining Equation (27) and (26) immediately leads to
Equation (13).

B.4 Proof of Theorem 2
Proof. We first show the feasibility of the mechanism. Dur-
ing the ironing procedure, it is clear that the function Li(qi) is
convex. As the derivative of Li(qi), ℓi(qi) is then monotone
non-decreasing. Both Fi(vi) and its inverse function F−1

i (qi)
are increasing functions. Therefore, after the variable substi-
tution, κi(vi) is also a non-decreasing function. This guaran-
tees that the mechanism constructed based on κi(vi) is fea-
sible. The proof is the same as that of Theorem 1, and thus
omitted here.

We claim that the mechanism M is optimal, i.e., opti-
mizes Equation (13). After applying the ironing procedure,
the function φi(ϕi(vi), vi) has increasing differences. The
first term of Equation (13) can be optimized using the same
method as in the regular case. With the same argument as in
the proof of Theorem 1, we know that mechanism M maxi-
mizes the first term of Equation (13).

We now show that mechanism M also optimizes the sec-
ond term of Equation (13).Using integration by parts, we de-
rive the following:∫

v

[ki(Fi(vi))− ℓi(Fi(vi))]xi(v)f(v) dv

=

∫ v

0

[ki(Fi(vi))− ℓi(Fi(vi))]hi(ϕi(vi))Xi(vi)fi(vi) dvi

= [Ki(Fi(vi))− Li(Fi(vi))hi(ϕi(vi))Xi(vi)]

∣∣∣∣v
0

−
∫ v

0

[Ki(Fi(vi))− Li(Fi(vi))] d
[
hi(ϕi(vi))Xi(vi)

]
=

∫ v

0

[Li(Fi(vi))−Ki(Fi(vi))] d
[
hi(ϕi(vi))Xi(vi)

]
≤0,

where the last equality follows since Li is the convex hull
of the graph of Ki on [0, 1] and Ki is continuous, implying
that Ki(0) = Li(0) and Ki(1) = Li(1). The last inequality
follows from the facts that Li ≤ Ki by construction and for
any feasible direct mechanism hi(ϕi(vi))Xi(vi) is monotone
non-decreasing.

Note that during the ironing procedure for any qi ∈ [0, 1],
there are only two cases

• Li(qi) = Ki(qi). In this case, the integrand Li(qi) −
Ki(qi) is 0.

• Li(qi) < Ki(qi). In this case, there must exist a starting
point q1i < qi and q2i > qi, such that Ki(q

1
i ) = Li(q

1
i ),

Ki(q
2
i ) = Li(q

2
i ) and Ki(q

′
i) < Li(q

′
i),∀q′i ∈ (q1i , q

2
i ).

It follows from the ironing procedure that κi(vi) =

ℓi(qi) =
Ki(q

2
i )−Ki(q

1
i )

q2i−q1i
is a constant in the interval

[q1i , q
2
i ]. As a result, hi(ϕi(vi))Xi(vi) is also a constant

in the interval.
Since it is always the case that either Li(qi)−Ki(qi) = 0

or d
[
hi(ϕi(vi))Xi(vi)

]
= 0, we have:∫ v

0

[Li(Fi(vi))−Ki(Fi(vi))] d
[
hi(ϕi(vi))Xi(vi)

]
= 0.



Therefore, mechanism M also maximizes the second term
of Equation (13), and thus simultaneously maximizes both
terms, which means mechanism M is optimal.

C Omitted Proofs in Section 4
C.1 Proof of Lemma 6
Proof. Recall that in the optimal mechanism, the coupon
function ϕ̄i(vi) maximizes φ̄i(ci, vi) = hi(ci)[κi(vi) −
ri(ci)ci] = hi(ci)κi(vi) − hi(ci)ri(ci)ci for any given vi.
Clearly, the second term hi(ci)ri(ci)ci is a non-decreasing
function. If κi(vi) ≤ 0, the first term become non-increasing,
making φ̄i(ci, vi) a non-increasing function of ci. This
means setting ci = 0 maximizes φ̄i(ci, vi). Thus, we have
ϕ̄i(vi) = 0, i.e., the optimal mechanism offers no coupon in
this case.

C.2 Proof of Lemma 7
Proof. The coupon function ϕ̄i(vi) should maximize
φ̄i(ci, vi) in the optimal mechanism. If ϕ̄i(vi) > 0, according
to first-order condition, we have:

∂φ̄i(ci, vi)

∂ci

∣∣∣∣
ci=ϕ̄i(vi)

=

[
κ̄i(vi)

d

dci
hi(ci)−

d

dci
[hi(ci)ri(ci)ci]

]∣∣∣∣
ci=ϕ̄i(vi)

= 0.

which completes the proof.
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