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Abstract
Online advertising serves as the primary revenue source for nu-

merous Internet companies, which typically sell advertising slots

through auctions. Conventional online ad auctions assume constant

click-through rates (CTRs) and conversion rates (CVRs) for ads dur-

ing the auction process. However, this paper studies a new scenario

where advertisers can offer coupons to users, thereby influencing

both CTRs and CVRs and consequently, the platform’s revenue.

We study how to recommend user coupons to advertisers in

truthful auction systems. We model the interaction between the

platform and the advertisers as an extensive-form game, where ad-

vertisers first report coupon bids to the platform to receive coupon

recommendations, and then participate in auctions by reporting

their auction bids. Our research identifies a sufficient condition

under which the advertisers’ optimal strategy is to report their val-

uations truthfully in both the recommendation and auction stages.

We construct two mechanisms based on these findings. The

first mechanism is a distribution-free mechanism, which is easily

implementable in industrial systems; and the second is a revenue-

optimal mechanism that offers simpler implementation compared

to existing work [10]. Both synthetic and industrial experiments

show that our mechanisms improve the platform’s revenue. No-

tably, our revenue-optimal mechanism achieves the same outcome

compared to existing work by Liu et al. [10], while offering a simpler

implementation.

CCS Concepts
• Information systems → Computational advertising; • The-
ory of computation → Algorithmic game theory and mecha-
nism design.
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1 Introduction
Auction design has attracted significant attention in both computer

science and economics, leading to the development and implemen-

tation of various auction mechanisms across different applications

over the past decades [1, 4, 6, 13, 22], including the Vickery-Clarke-

Groves (VCG) auction [3, 8, 23], Myerson’s optimal auction [15],

and the generalized second-price (GSP) auction [6, 22].

One of the most prominent and commercially successful applica-

tions of auction theory is online advertising, which contributes to

the primary revenue of many Internet companies such as Google,

TikTok, and Alibaba. In these systems, in addition to advertisers’

bids, relevance scores also play a crucial role in optimizing the

auction outcomes. Two widely used relevance scores are the Click-

Through Rates (CTRs) and the Conversion Rates (CVRs). The CTR

denotes the probability of a user clicking on an advertisement and

the CVR represents the probability of a user purchasing the adver-

tiser’s product after clicking on the ad.

Consider the example of a per-click auction. Advertisers first

submit their bids for a single click. The platform uses the CTRs

(and/or the CVRs) to calculate the rank score by multiplying the

advertiser’s bid with the corresponding relevance score. This rank

score is then used to determine both the allocation and the payment.

The CTRs and the CVRs are usually treated as constants in the

auction process. However, recent studies [10, 16] start to regard

them as variables, considering a setting where the platform can offer

coupons to users when displaying the ads. These coupons allow

users to purchase products or services at lower prices, making the

ads more attractive and therefore increasing both CTRs and CVRs.

In economic theories, the inverse relationship between price and

demand is usually described by demand curves [11], where lower

prices generally lead to higher demand [17]. Both the CTRs and

CVRs can be viewed as proxies for user demand in online advertis-

ing. From this perspective, coupons work as a re-pricing mechanism
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that lowers the prices of products or services in exchange for higher

demand. However, advertisers often lack precise knowledge of the

demand curves, making it difficult for them to set optimal prices to

maximize profit. In contrast, advertising platforms have access to

vast amounts of user data, allowing them to train machine learn-

ing models to accurately predict CTRs and CVRs at varying price

points. With this capability, platforms can recommend coupons that

increase not only the profits for advertisers but also the revenue

for the platform, as coupons directly affect both the price and the

CTRs and CVRs, which in turn changes the auction outcomes.

In previous studies [10, 16], advertisers submit bids once, and

the auction mechanism simultaneously determines coupon allo-

cations, ad placements, and payments. To maintain the incentive

compatibility property in these settings, complex payment func-

tions are required, which introduces significant implementation

challenges. From a practical standpoint, such complexity can hinder

the adoption of the mechanism.

In this paper, we address this issue by modeling the auction

process as an extensive-form game. The mechanism is split into

two stages. In the first stage, advertisers report their coupon bids

to get personalized coupon recommendations. In the second stage,

advertisers report their auction bids to participate in auctions.

By decoupling the coupon recommendation stage from the auc-

tion process, there is no need to design a complicated payment func-

tion to ensure incentive compatibility. This is because the coupons

are determined in the first stage, which already pin down the CTRs

and CVRs. Therefore, in the auction stage, them can still be regarded

as constants, as in standard auction settings.

Our goal, in this paper, is to design a coupon recommendation

strategy within truthful mechanisms that is easy to implement

with desirable economic properties. In particular, our mechanism

should be compatible with the prevalent industry standards, i.e.,

the second-price auctions. Such compatibility ensures that the inte-

gration of coupons does not change the rules of the existing auction

frameworks.

We summarize our contributions as follows:

• We model the coupon recommendation within truthful auc-

tions as an extensive-form game and provide a sufficient

condition in which the advertisers report truthfully in the

recommendation stage;

• We construct two mechanisms, which create win-win sit-

uations, benefiting the advertisers, the platform, and the

users;

• We conduct extensive experiments with both synthetic and

industrial datasets to demonstrate the performance of our

mechanism.

1.1 Related Work
Our work is related to the design of revenue-optimal mechanisms

under different settings [10, 12, 15, 18, 24]. There is also a line of

work that aims to improve revenue for simple auction mechanisms

such as the second-price auction. Different approaches have been

proposed include setting appropriate reserve prices [2, 9], boosting

the bidders’ bids [5, 7], offering coupons to bidders [19, 20] and

users [10, 16].

Ni et al. [16] and Liu et al. [10] both consider bid-dependent

coupons. The mechanism proposed by Ni et al. [16] is designed

for an auto-bidding setting, while the mechanism provided by Liu

et al. [10] suffers from implementation issues. Our work also con-

siders the optimization of the platform’s revenue by distributing

user coupons. Compared to the work by Liu et al. [10], their mech-

anism requires the knowledge of the distribution, and the integra-

tion part cannot be simplified. However, one mechanism of ours

is distribution-free and both two mechanisms don’t involve the

integration part. Although our mechanism requires two stages of

bidding, compared with Liu et al. [10], our mechanism does not

introduce an additional computation process. Both our mechanism

and theirs need to compute the coupons, the allocations, and the

payments.

2 Preliminaries
We consider a scenario where one seller auctions off a single adver-

tising slot to 𝑛 advertisers, denoted by [𝑛] = {1, 2, · · · , 𝑛}. For each
advertiser 𝑖 , his value 𝑣𝑖 ∈ V = [0, 𝑣] for the slot is drawn from

distribution 𝐹𝑖 (𝑣𝑖 ), with the corresponding density function 𝑓𝑖 (𝑣𝑖 ).
We assume that all advertisers’ value distributions are independent

and publicly known to both the advertisers and the seller. However,

the realized values are the private information of each advertiser.

Unlike the standard auction setting where the CTRs and the

CVRs are treated as constants, we consider a new auction scenario

in which the CTRs and CVRs are variables, and can be influenced

by offering coupons to users. Let 𝑐𝑖 ∈ C ⊆ R+ denote the coupon

offered to the user when advertiser 𝑖’s ad is displayed.

Let ℎ𝑖 (𝑐𝑖 ) be the CTR (or CVR) of the advertiser 𝑖’s ad when

offering coupon 𝑐𝑖 to the user. We assume that the seller employs

a truthful auction mechanism, such as second-price auctions or

Myerson auctions, to determine the allocation and the payment.

Different from previous work [10], where the platform offers

coupons directly to users, in our setting, the platform can only

recommend that advertisers offer coupons to users. We model this

scenario as an extensive-form game with the following steps:

(1) Advertiser 𝑖 reports a bid 𝑏𝑐
𝑖
to the platform, and the platform

recommends a coupon 𝜙𝑖 (𝑏𝑐𝑖 ) to be offered to the user.

(2) After receiving the coupon recommendation, advertiser 𝑖 de-

termines whether to follow the platform’s recommendation.

If advertiser 𝑖 follows the recommendation, the platform sets

𝑐𝑖 = 𝜙𝑖 (𝑏𝑐𝑖 ), otherwise, 𝑐𝑖 = 0.

(3) Advertiser 𝑖 ∈ [𝑛] reports a bid 𝑏𝑎
𝑖
to the platform in the

auction process.

(4) The platform determines the allocation and payment based

on the auction mechanism.

Formally, we define the mechanism as follows.

Definition 1. A mechanismM is a tuple (𝑥, 𝑝, 𝜙), where
• 𝜙 = (𝜙1, 𝜙2, · · · , 𝜙𝑛) is the coupon function, where 𝜙𝑖 maps
advertiser 𝑖’s bid 𝑏𝑐

𝑖
to coupon 𝑐𝑖 ;

• 𝑥 = (𝑥1, 𝑥2, · · · , 𝑥𝑛) is the allocation rule, in which 𝑥𝑖 maps the
advertisers’ bids 𝑏𝑎 to the probability of advertiser 𝑖 winning
the auction given advertisers’ coupons 𝑐 ;

• 𝑝 = (𝑝1, 𝑝2, · · · , 𝑝𝑛) is the payment rule, in which 𝑝𝑖 maps
the advertisers’ bids 𝑏𝑎 to the payment of advertiser 𝑖 in the
auction given advertisers’ coupons 𝑐 .
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Weuse 𝑣−𝑖 = (𝑣1, · · · , 𝑣𝑖−1, 𝑣𝑖+1, · · · , 𝑣𝑛) and𝑏𝑎−𝑖 = (𝑏𝑎
1
, · · · , 𝑏𝑎

𝑖−1
,

𝑏𝑎
𝑖+1

, · · · , 𝑏𝑎𝑛) to denote the advertisers’ valuation profile and bid

profile excluding advertiser 𝑖 , respectively.

Assume that the advertisers have quasi-linear utilities. Formally,

for advertiser 𝑖 , if his valuation is 𝑣𝑖 and he offers coupon 𝑐𝑖 to the

user, his utility is

𝑢𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ) = ℎ𝑖 (𝑐𝑖 ) (𝑣𝑖 − 𝑐𝑖 )𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ) − 𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ) .
The platform’s revenue is Rev =

∑𝑛
𝑖=1

𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ).
We analyze this extensive-form game using backward induction.

We first analyze the advertisers’ optimal auction bidding strategy

in the auction process, then we give a sufficient condition in which

the advertisers’ optimal bidding strategy in the coupon recommen-

dation process is bidding truthfully.

We assume that the platform uses a truthful mechanism that

does not incorporate coupons. As mentioned in the previous sec-

tion, we aim to integrate the coupon recommendation stage into

the mechanism without affecting the existing auction rules. It is

known that any truthful auction mechanism (𝑥, 𝑝) must satisfy the

following Myerson Lemma [15].

Lemma 1 (Myerson Lemma [15]). The auction mechanism (𝑥, 𝑝)
is incentive-compatible if and only if

• 𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ) is monotone non-decreasing with respect to 𝑣𝑖 .
• 𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ) is uniquely determined by the following function:

𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ) = 𝑣𝑖𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ) −
∫ 𝑣𝑖

0

𝑥𝑖 (𝑠, 𝑣−𝑖 )𝑑𝑠.

Note that in the above lemma, both 𝑥𝑖 and 𝑝𝑖 are not functions

of 𝑐 .

The following lemma shows that advertiser 𝑖’s optimal bidding

strategy with coupon 𝑐𝑖 is to bid 𝑣𝑖 − 𝑐𝑖
1
.

Lemma 2. For advertiser 𝑖 , his optimal bidding strategy is to report
𝑏𝑎
𝑖
= 𝑣𝑖 − 𝑐𝑖 when the coupon recommendation is 𝑐𝑖 .

Lemma 2 clearly shows that with coupons, mechanism (𝑥, 𝑝) is
no longer truthful. However, according to the Revelation Princi-

pal [14], to make the mechanism truthful, the platform can directly

use 𝑣𝑖 − 𝑐𝑖 to determine both the allocation and payment. In the

following analysis, we use 𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ) as advertiser 𝑖’s allocation
when offering coupon 𝑐𝑖 to users and 𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ) as the corre-

sponding payment.

Now, we identify a sufficient condition under which no advertiser

can achieve a higher utility by misreporting in the first stage.

Lemma 3. Advertiser 𝑖 cannot get a higher utility by misreporting
if the following two conditions hold.

• The coupon function 𝜙𝑖 (𝑏𝑐𝑖 ) is monotone non-decreasing with
respect to 𝑏𝑐

𝑖
.

• The allocation rule is maximized when reporting 𝑏𝑐
𝑖
= 𝑣𝑖 , i.e.,

𝑣𝑖 = arg max𝑏𝑐
𝑖
𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 (𝑏𝑐𝑖 )).

Proof. Assume that advertiser 𝑖 has a true valuation 𝑣𝑖 . Let

𝑏𝑐
𝑖
= 𝑣𝑖 denote the truthful bid in the first stage and let

ˆ𝑏𝑐
𝑖
represent

any misreported bid. When
ˆ𝑏𝑐
𝑖
> 𝑣𝑖 , the platform can recommend

a coupon 𝜙𝑖 ( ˆ𝑏𝑐
𝑖
) > 𝑣𝑖 , resulting in a negative utility for advertiser

1
In the second stage, the CTRs and the CVRs are pinned down, and the auction process

is the same as standard ones.

𝑖 . Thus, in the following proof, we only need to show advertiser 𝑖

cannot bid
ˆ𝑏𝑐
𝑖
to get a higher utility.

Truthful Reporting:When advertiser 𝑖 bids truthfully (𝑏𝑐
𝑖
= 𝑣𝑖 ),

the platform recommends a coupon 𝜙𝑖 (𝑏𝑐𝑖 ) = 𝜙𝑖 (𝑣𝑖 ). According to
Lemma 2, advertiser 𝑖 then bids 𝑣𝑖 in the auction. The utility for

advertiser 𝑖 in this scenario is

𝑢𝑖 (𝑏𝑐𝑖 ) = ℎ𝑖 (𝜙𝑖 (𝑏𝑐𝑖 )) (𝑣𝑖 − 𝜙𝑖 (𝑏𝑐𝑖 ))𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 (𝑏
𝑐
𝑖 )) − 𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 (𝑏𝑐𝑖 ))

= ℎ𝑖 (𝜙𝑖 (𝑣𝑖 ))
∫ 𝑣𝑖

0

𝑥𝑖 (𝑠, 𝑣−𝑖 ;𝜙𝑖 (𝑣𝑖 )) d𝑠 .

Misreporting: Suppose advertiser 𝑖 misreports by selecting
ˆ𝑏𝑐
𝑖
.

The platform then recommends a coupon 𝜙𝑖 ( ˆ𝑏𝑐
𝑖
). Again, by Lemma

2, advertiser 𝑖 bids 𝑣𝑖 in the auction. The utility in this case is

𝑢𝑖 ( ˆ𝑏𝑐𝑖 ) = ℎ𝑖 (𝜙𝑖 ( ˆ𝑏𝑐𝑖 )) (𝑣𝑖 − 𝜙𝑖 ( ˆ𝑏𝑐𝑖 ))𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 ( ˆ𝑏𝑐𝑖 )) − 𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 ( ˆ𝑏𝑐𝑖 ))

= ℎ𝑖 (𝜙𝑖 ( ˆ𝑏𝑐𝑖 ))
∫ 𝑣𝑖

0

𝑥𝑖 (𝑠, 𝑣−𝑖 ;𝜙𝑖 ( ˆ𝑏𝑐𝑖 )) d𝑠 .

Comparison of Utilities: Since the allocation rule is maximized

when 𝑏𝑐
𝑖
= 𝑣𝑖 , it follows that

𝑣𝑖 = arg max

𝑏𝑐
𝑖

𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 (𝑏𝑐𝑖 )) .

Therefore, for any misreport
ˆ𝑏𝑐
𝑖
,

𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 (𝑏𝑐𝑖 )) ≥ 𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 ( ˆ𝑏𝑐𝑖 )) .

Integrating both sides over the interval [0, 𝑣𝑖 ] yields∫ 𝑣𝑖

0

𝑥𝑖 (𝑠, 𝑣−𝑖 ;𝜙𝑖 (𝑏𝑐𝑖 )) d𝑠 ≥
∫ 𝑣𝑖

0

𝑥𝑖 (𝑠, 𝑣−𝑖 ;𝜙𝑖 ( ˆ𝑏𝑐𝑖 )) d𝑠 .

Additionally, given that the coupon function 𝜙𝑖 (𝑏𝑐𝑖 ) is mono-

tone non-decreasing and the function ℎ𝑖 (𝑐𝑖 ) is also monotone non-

decreasing, we have

𝜙𝑖 (𝑣𝑖 ) ≥ 𝜙𝑖 ( ˆ𝑏𝑐𝑖 ) and ℎ𝑖 (𝜙𝑖 (𝑣𝑖 )) ≥ ℎ𝑖 (𝜙𝑖 ( ˆ𝑏𝑐𝑖 )) .

It follows that

𝑢𝑖 (𝑏𝑐𝑖 ) = ℎ𝑖 (𝜙𝑖 (𝑣𝑖 ))
∫ 𝑣𝑖

0

𝑥𝑖 (𝑠, 𝑣−𝑖 ;𝜙𝑖 (𝑣𝑖 )) d𝑠

≥ ℎ𝑖 (𝜙𝑖 ( ˆ𝑏𝑐𝑖 ))
∫ 𝑣𝑖

0

𝑥𝑖 (𝑠, 𝑣−𝑖 ;𝜙𝑖 ( ˆ𝑏𝑐𝑖 )) d𝑠 = 𝑢𝑖 ( ˆ𝑏𝑐𝑖 ) .

Therefore, advertiser 𝑖 does not gain any additional utility by

misreporting his bid. □

Lemma 3 establishes sufficient conditions for the coupon func-

tion 𝜙𝑖 (𝑣𝑖 ) that ensures truthful bidding of advertiser 𝑖 in the first

stage. Complementing this, Lemma 2 characterizes the advertisers’

optimal strategy in the auction stage. Building upon these foun-

dational results, we proceed in the next section to construct the

function 𝜙𝑖 (𝑣𝑖 ) and analyze its implications on both the advertisers’

utility and the platform’s revenue. Furthermore, we demonstrate

that adhering to the platform’s coupon recommendations yields

superior outcomes compared to the strategy of offering no coupons

to users.
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3 Distribution-free auctions
In this section, we analyze the setting where the platform employs

distribution-free auctions as the base mechanism. We begin by

examining advertisers’ utility and platform revenue under second-

price auctions.

Definition 2 (Second-price Auction). In a second-price auc-
tion, the advertiser with the highest rank-score wins the auction and
the payment is the second highest rank-score. Formally, define the
rank score as the product of CTRs and the corresponding bids,

𝑟𝑖 (𝑣𝑖 ) = ℎ𝑖 (𝜙𝑖 (𝑣𝑖 )) (𝑣𝑖 − 𝜙𝑖 (𝑣𝑖 )) .
The allocation rule is

𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 (𝑣𝑖 )) =
{

1 if 𝑟𝑖 (𝑣𝑖 ) ≥ 𝑟 𝑗 (𝑣 𝑗 ),∀𝑗
0 otherwise

, (1)

and the payment rule is

𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 (𝑣𝑖 )) =
{

max𝑗≠𝑖 𝑟 𝑗 (𝑣 𝑗 ) if 𝑟𝑖 (𝑣𝑖 ) ≥ 𝑟 𝑗 (𝑣 𝑗 ),∀𝑗
0 otherwise

. (2)

Let Φ𝑖 (𝑣𝑖 ) be the set of the coupons maximizing the advertiser

𝑖’s rank-score when valuation is 𝑣𝑖 :

Φ𝑖 (𝑣𝑖 ) =
{
𝑐

����𝑐 ∈ arg max

𝑏

ℎ𝑖 (𝑏) (𝑣𝑖 − 𝑏)
}
. (3)

Then we define the coupon function as

𝜙𝑖 (𝑣𝑖 ) = min {Φ𝑖 (𝑣𝑖 )} . (4)

Before we dive into our analysis, we introduce the following

definition.

Definition 3 (Increasing Difference). A function 𝑔 : A ×
B ↦→ R has increasing difference if for any (𝑎, 𝑏), (𝑎′, 𝑏′) ∈ A × B
with 𝑎 > 𝑎′, 𝑏 > 𝑏′, the following holds:

𝑔(𝑎, 𝑏) − 𝑔(𝑎, 𝑏′) ≥ 𝑔(𝑎′, 𝑏) − 𝑔(𝑎′, 𝑏′).

Recall that ℎ𝑖 (𝑐) is a monotone increasing and concave function.

Thus, ℎ𝑖 (𝑐) (𝑣𝑖 − 𝑐) has increasing difference. Then, we can get the

following result.

Lemma 4. The mechanism M = (𝜙, 𝑥, 𝑝), in which the coupon
function is defined in (4), the allocation rule is defined in (1) and
the payment rule is defined in (2), ensures that truthfully reporting
valuations in both the first and second stages is the optimal strategy
for advertisers.

Now we compare the advertisers’ utility and the platform’s rev-

enue between this mechanism and the vanilla second-price auctions

without coupons.

Lemma 5. Following the platform’s recommendation is a weakly
dominant strategy for advertisers, and offering coupons to users can
weakly increase advertisers’ utilities.

Proof. In a distribution-free auction mechanism, one adver-

tiser’s payment depends solely on other advertisers’ bid profiles.

For convenience, we use 𝑟 𝑗 (𝑣 𝑗 ) as the highest rank-score other than
that of advertiser 𝑖 .

We compare the advertiser 𝑖’s utility between offering coupons

and not offering coupons.

• If advertiser 𝑖 doesn’t choose to offer coupons, his utility is

𝑢𝑖 = [ℎ𝑖 (0)𝑣𝑖 − 𝑟 𝑗 (𝑣 𝑗 )]𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 0).
• If advertiser 𝑖 follows the platform’s recommendation and

offers coupon 𝜙𝑖 (𝑣𝑖 ) to users, his utility is

𝑢′𝑖 = [ℎ𝑖 (𝜙𝑖 (𝑣𝑖 )) (𝑣𝑖 − 𝜙𝑖 (𝑣𝑖 )) − 𝑟 𝑗 (𝑣 𝑗 )]𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 (𝑣𝑖 )) .
We know that

𝜙𝑖 (𝑣𝑖 ) = arg max

𝑏

ℎ𝑖 (𝑏) (𝑣𝑖 − 𝑏),

which implies

ℎ𝑖 (𝜙𝑖 (𝑣𝑖 )) (𝑣𝑖 − 𝜙𝑖 (𝑣𝑖 )) ≥ ℎ𝑖 (0)𝑣𝑖 .

Additionally, since the rank-score is defined as 𝑟𝑖 (𝑣𝑖 ) = ℎ𝑖 (𝜙𝑖 (𝑣𝑖 )) (𝑣𝑖−
𝜙𝑖 (𝑣𝑖 )). We can conclude that 𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 (𝑣𝑖 )) ≥ 𝑥𝑖 (𝑣𝑖 ; 𝑣−𝑖 ; 0).

Combining these two arguments, we conclude that𝑢′
𝑖
≥ 𝑢𝑖 . Thus,

following the platform’s recommendation can weakly increase ad-

vertiser 𝑖’s utility. □

Lemma 6. This mechanism weakly increases the platform’s rev-
enue.

Proof. For a single auction, we use 𝑟 𝑗 (𝑣 𝑗 ) to denote the second-
highest rank-score, which also represents the platform’s revenue

in this auction. According to Lemma 5, we know that following

the recommendation to offer coupons is the advertiser 𝑗 ’s opti-

mal strategy. Since offering coupons to users weakly increases the

second-highest rank score. Thus, this mechanism weakly increases

the platform’s revenue. □

Combining Lemma 5 and Lemma 6, we immediately obtain the

following result.

Theorem 1. Second-price auctions with user coupons create a
win-win situation, benefiting the advertisers, the platform, and the
users.

Proof. According to Lemma 5 and Lemma 6, second-price auc-

tions with user coupons increases the advertisers’ utilities and the

platform’s revenue.

As for the users, they can purchase products at a lower price

with coupons, which is clearly beneficial. □

After analyzing the coupon function in second-price auctions,

we then proceed to construct a coupon function in distribution-

dependent auctions such as Myerson auctions. Further, we show

that Myerson auctions with coupons achieve optimal revenue for

the platform. This mechanism simplifies the implementation of the

mechanism proposed by Liu et al. [10] but has the same outcome.

In equilibrium, these two games are revenue equivalent.

4 Distribution-dependent auctions
In this section, we assume that the valuation of the 𝑛 advertisers are

independent random variables. The joint distribution 𝑓 (𝑣) : V𝑛 ↦→
R for the valuation profile 𝑣 = (𝑣1, · · · , 𝑣𝑛) is the product of each
advertiser’s valuation distribution:

𝑓 (𝑣) =
∏
𝑖∈[𝑛]

𝑓𝑖 (𝑣𝑖 ) .
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We also define 𝑓−𝑖 (𝑣−𝑖 ) : V𝑛−1 ↦→ R for the valuation profile

𝑣−𝑖 as

𝑓−𝑖 (𝑣−𝑖 ) =
∏

𝑗∈[𝑛], 𝑗≠𝑖
𝑓𝑗 (𝑣 𝑗 ).

Following a similar induction process as in Myerson [15], we

first derive the virtual value function for this case, which will be

helpful in constructing a coupon function.

Lemma 7. After fixing each advertiser’s coupon recommendation
𝑐 = (𝑐1, · · · , 𝑐𝑛), the platform’s revenue can be expressed as

Rev =
∫
𝑣

[
𝑛∑︁
𝑖=1

ℎ𝑖 (𝑐𝑖 )
(
𝑣𝑖 − 𝑐𝑖 −

1 − 𝐹𝑖 (𝑣)
𝑓𝑖 (𝑣)

)
𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 )

]
𝑓 (𝑣) d𝑣 .

Proof. According to Lemma 2, we know that in the auction

stage, the advertisers’ optimal bidding strategy is to bid their valua-

tion profile truthfully.

Following the Myerson Lemma [15], we know

Rev =

∫
𝑣

[
𝑛∑︁
𝑖=1

𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 )
]
𝑓 (𝑣) d𝑣

=

∫
𝑣

[ 𝑛∑︁
𝑖=1

ℎ𝑖 (𝑐𝑖 ) (𝑣𝑖 − 𝑐𝑖 )𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 )

− ℎ𝑖 (𝑐𝑖 )
∫ 𝑣𝑖

0

𝑥𝑖 (𝑠, 𝑣−𝑖 ; 𝑐𝑖 ) d𝑠

]
𝑓 (𝑣) d𝑣

=

∫
𝑣−𝑖

[ 𝑛∑︁
𝑖=1

∫
𝑣𝑖

ℎ𝑖 (𝑐𝑖 ) (𝑣𝑖 − 𝑐𝑖 )𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ) 𝑓𝑖 (𝑣𝑖 ) d𝑣𝑖

− ℎ𝑖 (𝑐𝑖 )
∫
𝑣𝑖

∫ 𝑣𝑖

0

𝑥𝑖 (𝑠, 𝑣−𝑖 ; 𝑐𝑖 ) 𝑓𝑖 (𝑣𝑖 ) d𝑠d𝑣𝑖

]
𝑓−𝑖 (𝑣−𝑖 ) d𝑣−𝑖 .

Using integration by parts, we have

Rev =

∫
𝑣−𝑖

[
𝑛∑︁
𝑖=1

ℎ𝑖 (𝑐𝑖 )∫
𝑣𝑖

(
𝑣𝑖 − 𝑐𝑖 −

1 − 𝐹𝑖 (𝑣𝑖 )
𝑓𝑖 (𝑣𝑖 )

)
𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ) 𝑓𝑖 (𝑣𝑖 ) d𝑣𝑖

]
𝑓−𝑖 (𝑣−𝑖 ) d𝑣−𝑖

=

∫
𝑣

[
𝑛∑︁
𝑖=1

ℎ𝑖 (𝑐𝑖 )
(
𝑣𝑖 − 𝑐𝑖 −

1 − 𝐹𝑖 (𝑣𝑖 )
𝑓𝑖 (𝑣𝑖 )

)
𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 )

]
𝑓 (𝑣) d𝑣 .

□

We now define the auction mechanism to be analyzed in this

section. Let the advertiser 𝑖’s rank score be

𝑟𝑖 (𝑣𝑖 ; 𝑐𝑖 ) = ℎ𝑖 (𝑐𝑖 )
(
𝑣𝑖 − 𝑐𝑖 −

1 − 𝐹𝑖 (𝑣𝑖 )
𝑓𝑖 (𝑣𝑖 )

)
.

The allocation rule is defined as follows:

𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ) =
{

1 if 𝑟𝑖 (𝑣𝑖 ; 𝑐𝑖 ) ≥ 𝑟 𝑗 (𝑣 𝑗 ; 𝑐 𝑗 ),∀𝑗
0 otherwise

, (5)

and the payment rule is:

𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 )

=ℎ𝑖 (𝑐𝑖 )
[
(𝑣𝑖 − 𝑐𝑖 )𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ) −

∫ 𝑣𝑖

0

𝑥𝑖 (𝑠, 𝑣−𝑖 ; 𝑐𝑖 ) d𝑠

]
=

{
ℎ𝑖 (𝑐𝑖 ) (𝑤𝑖 − 𝑐𝑖 ) if 𝑟𝑖 (𝑣𝑖 ; 𝑐𝑖 ) ≥ 𝑟 𝑗 (𝑣 𝑗 ; 𝑐 𝑗 ),∀𝑗
0 otherwise

,

(6)

where𝑤𝑖 is the minimum bid ensuring advertiser 𝑖 wins the auction,

i.e.,

ℎ𝑖 (𝑐𝑖 )
(
𝑤𝑖 − 𝑐𝑖 −

1 − 𝐹𝑖 (𝑤𝑖 )
𝑓𝑖 (𝑤𝑖 )

)
= max

𝑗≠𝑖
𝑟 𝑗 (𝑣 𝑗 ; 𝑐 𝑗 ).

Similarly, define the coupons maximizing the advertise 𝑖’s rank-

score when valuation is 𝑣𝑖 as the set Φ𝑖 (𝑣𝑖 )

Φ𝑖 (𝑣𝑖 ) =
{
𝑐

����𝑐 ∈ arg max

𝑏

ℎ𝑖 (𝑏)
(
𝑣𝑖 − 𝑏 − 1 − 𝐹𝑖 (𝑣𝑖 )

𝑓𝑖 (𝑣𝑖 )

)}
,

and the coupon function as

𝜙𝑖 (𝑣𝑖 ) = min{Φ𝑖 (𝑣𝑖 )}. (7)

In the following analysis, we assume the virtual value function

𝑟𝑖 (𝑣𝑖 ; 𝑐𝑖 ) is monotone non-decreasing with respect to 𝑣𝑖 . In the

general setting, if 𝑟𝑖 (𝑣𝑖 ; 𝑐𝑖 ) is not monotone non-decreasing with

respect to 𝑣𝑖 , we can use the so-called “ironing” technique to obtain

an ironed virtual value function 𝑟𝑖 (𝑣𝑖 ; 𝑐𝑖 ) which is monotone non-

decreasing without losing any revenue.

Lemma 8. In the mechanism M = (𝜙, 𝑥, 𝑝), where the coupon
function, the allocation rule and the payment rule are defined in (7),
(5) and (6), respectively, truthfully reporting their valuation in both
the first and second stages is optimal for advertisers.

Proof. First, 𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ) is monotone non-decreasing with

respect to 𝑣𝑖 as 𝑣𝑖 − 1−𝐹𝑖 (𝑣𝑖 )
𝑓𝑖 (𝑣𝑖 ) is monotone non-decreasing with

respect to 𝑣𝑖 .

According to the Myerson Lemma [15], the payment rule is

identical defined as

𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ) = ℎ𝑖 (𝑐𝑖 )
[
(𝑣𝑖 − 𝑐𝑖 )𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ) −

∫ 𝑣𝑖

0

𝑥𝑖 (𝑠, 𝑣−𝑖 ; 𝑐𝑖 ) d𝑠

]
=

{
ℎ𝑖 (𝑐𝑖 ) (𝑤𝑖 − 𝑐𝑖 ) if 𝑟𝑖 (𝑣𝑖 ; 𝑐𝑖 ) ≥ 𝑟 𝑗 (𝑣 𝑗 ; 𝑐 𝑗 ),∀𝑗
0 otherwise

,

where 𝑤𝑖 is the minimum value ensuring advertiser 𝑖 wins the

auction, i.e.,

ℎ𝑖 (𝑐𝑖 )
(
𝑤𝑖 − 𝑐𝑖 −

1 − 𝐹𝑖 (𝑤𝑖 )
𝑓𝑖 (𝑤𝑖 )

)
= max

𝑗≠𝑖
𝑟 𝑗 (𝑣 𝑗 ; 𝑐 𝑗 ).

In the auction stage, since the advertisers’ bids do not affect the

coupon offered to users, it is an optimal strategy for advertisers

bidding truthfully in the auction stage.

Next, we show that it is also an optimal strategy for advertisers

to report their true valuation in the coupon recommendation stage.

Since 𝑣𝑖 − 1−𝐹𝑖 (𝑣𝑖 )
𝑓𝑖 (𝑣𝑖 ) is monotone non-decreasing with respect to

𝑣𝑖 and ℎ𝑖 (𝑐𝑖 ) is monotone non-decreasing with respect to 𝑐𝑖 . Thus

we know the following function

ℎ𝑖 (𝑐𝑖 )
[
𝑣𝑖 − 𝑐𝑖 −

1 − 𝐹𝑖 (𝑣𝑖 )
𝑓𝑖 (𝑣𝑖 )

]
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has increasing differences. According to Topki’s Theorem [21], we

know 𝜙𝑖 (𝑣𝑖 ) is also non-decreasing with respect to 𝑣𝑖 .

Based on the definition of the coupon function in (7), we have

that

ℎ𝑖 (𝜙𝑖 (𝑣𝑖 ))
(
𝑣𝑖 −

1 − 𝐹𝑖 (𝑣𝑖 )
𝑓𝑖 (𝑣𝑖 )

− 𝜙𝑖 (𝑣𝑖 )
)

≥ℎ𝑖 (𝜙𝑖 (𝑣 ′𝑖 ))
(
𝑣𝑖 −

1 − 𝐹𝑖 (𝑣𝑖 )
𝑓𝑖 (𝑣𝑖 )

− 𝜙𝑖 (𝑣 ′𝑖 )
)
,

making truthfully reporting an optimal strategy in the coupon

recommendation stage based on Lemma 3. □

After showing the advertisers’ optimal strategy in both the first

and the second stages, we now consider the platform’s optimal

revenue in our setting.

Lemma 7 shows the platform’s revenue expressed by the vir-

tual value function, which is the same as the findings of Liu et al.

[10]. Their work constructs a revenue-optimal mechanism for the

platform. Consequently, we can conclude that our mechanism also

achieves optimal revenue. However, it’s important to note that their

mechanism has a complicated integral computation process, but

our method avoids it.

We will now proceed to demonstrate that our mechanism in-

creases both the advertisers’ utilities and the platform’s revenue.

Lemma 9. Following the platform’s recommendation is a weakly
dominant strategy for advertisers and offering coupons to users can
weakly increase advertisers’ utilities.

Proof. According to Lemma 7, in one auction, the advertiser’s

payment can be written as

𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 (𝑣𝑖 )) =ℎ𝑖 (𝜙𝑖 (𝑣𝑖 ))
[
𝑣𝑖 −

1 − 𝐹𝑖 (𝑣𝑖 )
𝑓𝑖 (𝑣𝑖 )

− 𝜙𝑖 (𝑣𝑖 )
]

· 𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 (𝑣𝑖 )) .
If advertiser 𝑖 follows the platform’s recommendation, advertiser

𝑖’s utility is

𝑢𝑖 = ℎ𝑖 (𝜙𝑖 (𝑣𝑖 ))
[

1 − 𝐹𝑖 (𝑣𝑖 )
𝑓𝑖 (𝑣𝑖 )

]
𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 (𝑣𝑖 )).

If advertiser 𝑖 doesn’t follow the platform’s recommendation, ad-

vertiser 𝑖’s utility is

𝑢′𝑖 = ℎ𝑖 (0)
[

1 − 𝐹𝑖 (𝑣𝑖 )
𝑓𝑖 (𝑣𝑖 )

]
𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 0) .

Since ℎ𝑖 (𝜙𝑖 (𝑣𝑖 )) ≥ ℎ𝑖 (0) and 𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 (𝑣𝑖 )) ≥ 𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 0), it
follows that 𝑢𝑖 ≥ 𝑢′

𝑖
, making it optimal for advertiser 𝑖 to follow

the platform’s recommendation. □

Then we show that this mechanism also increases the platform’s

revenue.

Lemma 10. Offering coupons to users weakly increases the plat-
form’s revenue in Myerson auctions.

Proof. If offering coupons to users, we know the platform’s

revenue is

Rev =

∫
𝑣

[
𝑛∑︁
𝑖=1

ℎ𝑖 (𝑐𝑖 )
(
𝑣𝑖 − 𝑐𝑖 −

1 − 𝐹 (𝑣)
𝑓 (𝑣)

)
𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 )

]
𝑓 (𝑣) d𝑣 .

If the platform doesn’t offer coupons to users, the revenue is

Rev
′ =

∫
𝑣

[
𝑛∑︁
𝑖=1

ℎ𝑖 (0)
(
𝑣𝑖 −

1 − 𝐹 (𝑣)
𝑓 (𝑣)

)
𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 0)

]
𝑓 (𝑣) d𝑣 .

Based on the coupon function (7), we know that

ℎ𝑖 (𝑐𝑖 )
(
𝑣𝑖 − 𝑐𝑖 −

1 − 𝐹𝑖 (𝑣𝑖 )
𝑓𝑖 (𝑣𝑖 )

)
≥ ℎ𝑖 (0)

(
𝑣𝑖 −

1 − 𝐹𝑖 (𝑣𝑖 )
𝑓𝑖 (𝑣𝑖 )

)
,

and

𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ) ≥ 𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ; 0) .
Each term in 𝑅𝑒𝑣 is weakly larger than the corresponding term in

𝑅𝑒𝑣 ′. Thus, we have 𝑅𝑒𝑣 ≥ 𝑅𝑒𝑣 ′. □

Then we can further get the following theorem.

Theorem 2. By offering coupons to users, the mechanism M =

(𝜙, 𝑥, 𝑝), where 𝜙 is defined in (7), 𝑥 is defined in (5) and 𝑝 is defined
in (6), creates a win-win situation, benefiting the advertisers, the
platform and the users. Moreover, this mechanism achieves the optimal
revenue for the platform.

Proof. According to Lemma 9 and Lemma 10, we know that

Myerson auctions with user coupons weakly increase the adver-

tisers’ utilities and the platform’s revenue. The users also have a

lower price to buy the product after receiving the coupons. Thus,

this mechanism creates a win-win situation.

Furthermore, according to Lemma 6, our coupon function maxi-

mizes the virtual value function pointwise. Since the allocation rule

allocates the item with the highest virtual value. Thus, this alloca-

tion rule optimizes the platform’s revenue. So, this mechanism is

revenue-optimal. □

We have constructed two mechanisms, one is a second-price

auction with user coupons and the other one is Myerson auction

with user coupons. The former mechanism does not rely on the

knowledge of advertisers’ value distributions, while the latter does.

In the next section, we provide experimental results to verify our

mechanisms.

5 Experiments
We evaluate our proposed mechanisms through a series of exper-

iments using both synthetic and industrial data We compare the

following mechanisms:

(1) Second-price Auctions (SPA);

(2) Myerson Auctions (MA);

(3) Coupon Auctions [10] (CA);

(4) Second-price Auctions with Coupons (SPA-C);

(5) Myerson Auctions with Coupons (MA-C).

The first three mechanisms (SPA, MA, and CA) serve as baselines

and the last two mechanisms (SPA-C, MA-C) are proposed in this

paper.

It’s important to note that SPA and MA do not offer coupons

to users and CA provides coupons based on a complex payment

rule designed to satisfy incentive compatibility (IC) conditions.

Across all baseline mechanisms and our two proposed mechanisms,

the optimal bidding strategy is for users to report their valuations

truthfully. One difference between the baseline mechanisms and
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ours is that the advertisers bid only once in the baselinemechanisms,

while they bid twice in our mechanisms.

5.1 Synthetic dataset
We generate a synthetic dataset for our experiments following the

method described by Ni et al. [16]. The dataset is constructed with

the following parameters and assumptions:

(1) Coupon Set: We use a pre-defined set of four possible coupon

values: C = {0, 2, 4, 8};
(2) We consider there are 𝑛 = 8 advertisers participating in

𝑚 = 100, 000 auctions;

(3) Value Distributions: We examine two different value distri-

butions:

(a) Uniform Distribution 𝑣𝑖 ∼ U[5, 50];
(b) Log-normal Distribution: ln 𝑣𝑖 ∼ 𝑁 (3, 1).

(4) CTRs:

• Base CTR(without coupons): ℎ𝑖 (0) ∼ U[0.005, 0.5];
• CTR with coupon value 2: ℎ𝑖 (2) = 1.1ℎ𝑖 (0);
• CTR with coupon value 4: ℎ𝑖 (4) = 1.2ℎ𝑖 (0);
• CTR with coupon value 8: ℎ𝑖 (8) = 1.3ℎ𝑖 (0).

The CTRs are generated to reflect the impact of different coupon

values on user engagement. In each auction instance, the value for

each advertiser is independently drawn from the same distribution

(either uniform or log-normal). Thus, we generate two synthetic

datasets. These two datasets allow us to evaluate our proposed

mechanisms (SPA-C and MA-C) against the baseline methods under

controlled conditions, enabling a comprehensive analysis of their

performance across various scenarios.

After describing the dataset generation method, we now detail

the simulation procedure for our proposed mechanisms (SPA-C and

MA-C) and the baseline methods.

Our proposed mechanisms are simulated using a two-stage pro-

cess:

(1) Coupon Recommendation Stage:

• Receive the advertisers’ valuation profile;

• Enumerate all possible coupons;

• Determine the optimal coupons to recommend to each

advertiser.

(2) Auction Stage:

• Determine the corresponding CTRs based on the recom-

mended coupons;

• Receive the advertisers’ valuation profile as bids;

• Apply the corresponding allocation rule and payment rule

to determine the final allocation and payment.

The baseline methods are simulated by bidding once.

(1) Receive the advertisers’ valuation profile once;

(2) Simultaneously determine the coupon, allocation, and pay-

ment.

We now present our experimental results to evaluate the effec-

tiveness of our proposed methods. Our first objective is to demon-

strate that following the platform’s coupon recommendations leads

to better utilities for advertisers.

To illustrate the advantage of following the platform’s recom-

mendations, we conducted the following experiment:

(1) We randomly selected one advertiser, denoted as advertiser

𝑘 ;

(2) All other advertisers are set to follow the platform’s coupon

recommendations;

(3) We compared advertiser 𝑘’s utility under two scenarios:

(a) Following the platform’s recommendation;

(b) Ignoring the platform’s recommendation.

This comparison allows us to isolate the effect of following recom-

mendations on an individual advertiser’s utility while keeping the

behavior of other advertisers constant. The results are shown in Fig-

ure 1. Figure 1(a) presents the experimental results in the uniform

distribution dataset and Figure 1(b) shows the experimental results

in the lognormal distribution dataset. In both recommendation

coupons in second-price auctions and recommendation coupons

in Myerson auctions, following the platform’s recommendation

leads to better utilities for one advertiser. In the uniform distribu-

tion dataset, following the platform’s recommendation increases

35% in second-price auctions and 17% in Myerson auctions. In the

lognormal distribution dataset, following the platform’s recommen-

dation increases 38% in second-price auctions and 21% in Myerson

auctions.

(a) Uniform Distribution (b) Lognormal Distribution

Figure 1: The advertiser’s utility

After showing following the platform’s recommendation leads to

better utility for one advertiser, we then show that our mechanism

also increases the platform’s revenue. We also show that our mech-

anism with Myerson auctions has the same outcome compared to

the coupon auction proposed by Liu et al. [10].

(a) Uniform Distribution (b) Lognormal Distirbution

Figure 2: The advertiser’s utility and platform’s revenue.

In Figure 2, we show the advertisers’ total utility and the plat-

form’s revenue in different mechanisms. In the uniform distribution

dataset, Myerson auctions have a higher revenue for the platform
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compared to second-price auctions, but a lower advertisers’ total

utilities. The reason is that second-price auctions maximize social

welfare while Myerson auctions maximize revenue. Compared to

second-price auctions, offering coupons increases the advertisers’

total utility by 13% and the platform’s revenue by 6%. Offering

coupons in Myerson auctions increases the advertisers’ total utility

by 9% and the platform’s revenue by 7%. Compared to the coupon

auctions, recommending coupons in Myerson auctions have the

same outcome, which is consistent with our theoretical results.

In the lognormal distribution dataset, offering coupons increases

the advertisers’ total utility by 25% and the platform’s revenue by

11% in second-price auctions. InMyerson auctions, offering coupons

increases the advertisers’ total utility by 18% and the platform’s

revenue by 14%. Experimental results show that although Myerson

auctions with user coupons have higher revenue than second-price

auctions with user coupons. However, second-price auctions with

user coupons have higher advertisers’ total utility but sacrifice

a small fraction of revenue, which also shows the superiority of

distribution-free auctions.

5.2 Industrial dataset
To validate our proposed methods in a real-world context, we

conducted experiments using an industrial dataset obtained from

Kuaishou, a major short-form video and live-streaming platform.

Since the platform charges the advertisers in a per-impression

fashion. Thus, we modified our mechanism, in which the ℎ𝑖 (·) rep-
resents the CVR of advertiser 𝑖’s ad for one user. Since the platform

runs second-price auctions to sell ad slots. It is well known that

second-price auctions are incentive-compatible. Thus, the advertis-

ers’ historical bids are their values.

We collected data over 14 days, selecting 1,000 ads across diverse

product categories. The dataset contains rich feature sets: user fea-

tures (e.g., district, gender), product features (e.g., price, category),

and ad features (e.g., format, placement). Coupon values, ranging

from 5 to 20, were randomly assigned to users during the data col-

lection period. Then we use this dataset to train a CVR prediction

model to predict the ad’s CVRs under different users and different

coupon values. For our auction simulation, we selected the top 100

advertisers based on ad spend, ensuring a representative sample of

the platform’s advertising ecosystem.

We select 100,000 auction logs to simulate the auction process.

Similar to the experiments in the synthetic dataset, we conduct

experiments using the following steps.

(1) Coupon Recommendation Stage:

• Receive the advertisers’ valuation profile;

• Discretize the coupon space for each advertiser, and enu-

merate all possible coupons

• Determine the optimal coupons to recommend to each

advertiser.

(2) Auction Stage:

• Based on recommended coupons to determine each adver-

tiser’s corresponding CVRs;

• Receive the advertisers’ valuation profile as bids;

• Apply the corresponding allocation rule and payment rule

to determine the final allocation and payment.

For the coupon auction, we use the same methods to discretize the

coupon space and use the corresponding coupon function, alloca-

tion rule, and payment rule to determine the coupon, the allocation,

and the payment simultaneously.

We now present our experimental results to show the effective-

ness of our proposed methods. In the industrial dataset, one differ-

ence is that each advertiser’s value is independently drawn from a

different value distribution compared to the synthetic datasets. In

Figure 3, we show that following the platform’s recommendation

leads to higher utility for each advertiser in both second-price auc-

tions with user coupons and Myerson auctions with user coupons.

In second-price auctions with user coupons, following the plat-

form’s recommendation increases one advertiser’s utility by 72%.

In Myerson auctions with user coupons, following the platform’s

recommendation increases one advertiser’s utility by 65%.

Figure 3: Advertiser’s utility Figure 4: Advertisers’ utility
and platform’s revenue

In Figure 4, we compare the platform’s revenue and the adver-

tisers’ total utility in different mechanisms. In second-price auc-

tions, offering coupons increases the advertisers’ total utility by 91%

and the platform’s revenue by 85%. In Myerson auctions, offering

coupons increases the advertisers’ total utility by 81% and the plat-

form’s revenue by 88%. Compared to coupon auctions proposed by

Liu et al. [10], Myerson auctions with user coupons have the same

outcome when ignoring the precision of numerical calculations.

6 Conclusion
In this paper, we addressed the challenge of designing an optimal

coupon recommendation strategy within truthful auction mech-

anisms. Our research has led to the development of two novel

mechanisms: a mechanism that incorporates user coupons into

second-price auctions, which can be readily integrated into ex-

isting auction systems, and a mechanism that incorporates user

coupons into Myerson auctions, achieving optimal revenue for the

platform. Both theoretical and experimental analyses show that

our mechanisms create win-win situations for all the participating

parties.
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Appendix
A Ommited proofs
A.1 Proof of Lemma 2

Proof. Suppose advertiser 𝑖 has a valuation 𝑣𝑖 and receives a

coupon recommendation 𝑐𝑖 . If advertiser 𝑖 reports a bid 𝑏
𝑎
𝑖
= 𝑣𝑖 −𝑐𝑖 ,

the utility is given by

𝑢𝑖 (𝑣𝑖 , 𝑏𝑎−𝑖 ; 𝑐𝑖 ) =ℎ𝑖 (𝑐𝑖 ) (𝑣𝑖 − 𝑐𝑖 )𝑥𝑖 (𝑣𝑖 − 𝑐𝑖 , 𝑏
𝑎
−𝑖 ) − 𝑝𝑖 (𝑣𝑖 − 𝑐𝑖 , 𝑏

𝑎
−𝑖 )

=ℎ𝑖 (𝑐𝑖 )
∫ 𝑣𝑖−𝑐𝑖

0

𝑥𝑖 (𝑠, 𝑏𝑎−𝑖 )𝑑𝑠,

where 𝑥𝑖 (𝑏𝑎𝑖 , 𝑏
𝑎
−𝑖 ) is the allocation probability and 𝑝𝑖 (𝑏𝑎𝑖 , 𝑏

𝑎
−𝑖 ) is the

payment determined by the auction mechanism.

Now, consider a deviation where advertiser 𝑖 reports a bid 𝑏𝑎
′

𝑖
=

𝑣 ′
𝑖
− 𝑐𝑖 , where 𝑣

′
𝑖
≠ 𝑣𝑖 . The utility under this deviation becomes

𝑢𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 ; 𝑐𝑖 ) = ℎ𝑖 (𝑐𝑖 ) (𝑣𝑖 − 𝑐𝑖 )𝑥𝑖 (𝑣 ′𝑖 − 𝑐𝑖 , 𝑏−𝑖 ) − 𝑝𝑖 (𝑣 ′𝑖 − 𝑐𝑖 , 𝑏−𝑖 )

=ℎ𝑖 (𝑐𝑖 ) (𝑣𝑖 − 𝑣 ′𝑖 )𝑥𝑖 (𝑣
′
𝑖 − 𝑐𝑖 , 𝑏−𝑖 ) + ℎ𝑖 (𝑐𝑖 )

∫ 𝑣′𝑖−𝑐𝑖

0

𝑥𝑖 (𝑠, 𝑏−𝑖 )𝑑𝑠

Thus, advertiser 𝑖’s utility gain when reporting 𝑣 ′
𝑖
− 𝑐𝑖 is

Δ = ℎ𝑖 (𝑐𝑖 ) (𝑣𝑖 − 𝑣 ′𝑖 )𝑥𝑖 (𝑣
′
𝑖 − 𝑐𝑖 , 𝑏−𝑖 ) + ℎ𝑖 (𝑐𝑖 )

∫ 𝑣′𝑖−𝑐𝑖

𝑣𝑖−𝑐𝑖
𝑥𝑖 (𝑠, 𝑏−𝑖 )𝑑𝑠

= ℎ𝑖 (𝑐𝑖 ) (𝑣𝑖 − 𝑣 ′𝑖 ) [𝑥𝑖 (𝑣
′
𝑖 − 𝑐𝑖 , 𝑏−𝑖 ) − 𝑥𝑖 (𝜉, 𝑏−𝑖 )],

where 𝜉 lies in the interval between 𝑣𝑖 − 𝑐𝑖 and 𝑣
′
𝑖
− 𝑐𝑖 .

Now considering 𝑣 ′
𝑖
< 𝑣𝑖 , it follows that 𝑣

′
𝑖
− 𝑐𝑖 < 𝑣𝑖 − 𝑐𝑖 , 𝑥𝑖 (𝑣 ′𝑖 −

𝑐𝑖 , 𝑏−𝑖 ) − 𝑥𝑖 (𝜉, 𝑏−𝑖 ) < 0 and 𝑣𝑖 − 𝑣 ′
𝑖
> 0, meaning that Δ < 0.

Following the same analysis, we can also obtain that Δ < 0 when

𝑣 ′
𝑖
> 𝑣𝑖 , which completes the proof. □

A.2 Proof of Lemma 4
Proof. According to Lemma 2, we immediately conclude that

truthfully reporting their valuations is an optimal strategy for ad-

vertisers in the second stage, as second-price auctions satisfy the

Myerson Lemma.

According to Topki’s Theorem [21] and the fact that ℎ𝑖 (𝑐) (𝑣𝑖 −𝑐)
has increasing difference, we know that 𝜙𝑖 (𝑣𝑖 ) is a monotone non-

decreasing function.

Based on the definition of the coupon function, we know that

ℎ𝑖 (𝜙𝑖 (𝑣𝑖 )) (𝑣𝑖 − 𝜙𝑖 (𝑣𝑖 )) ≥ ℎ𝑖 (𝜙𝑖 (𝑣 ′𝑖 )) (𝑣𝑖 − 𝜙𝑖 (𝑣 ′𝑖 )),
meaning that 𝑣𝑖 ∈ arg max𝑏𝑐

𝑖
𝑥𝑖 (𝑣𝑖 , 𝑣−𝑖 ;𝜙𝑖 (𝑏𝑐𝑖 )). Applying Lemma

3, we can conclude that truthfully reporting valuations is also an

optimal strategy for advertisers in the first stage. □


	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Distribution-free auctions
	4 Distribution-dependent auctions
	5 Experiments
	5.1 Synthetic dataset
	5.2 Industrial dataset

	6 Conclusion
	Acknowledgments
	References
	A Ommited proofs
	A.1 Proof of Lemma 2
	A.2 Proof of Lemma 4


